\begin{table}%t1 \caption{\label{t:poisson1}Non-zero values of the coefficients in Eqs. (\protect\ref{Mup})$-$(\protect\ref{mup}).} \small%\centering \par \begin{tabular}{@{}cccc@{}} \hline\hline\noalign{\smallskip} \multicolumn{1}{c}{$(i,j)$} & \multicolumn{1}{c}{$M^*_{i,j}$} & \multicolumn{1}{c}{$\Lambda^*_{i,j}$} & \multicolumn{1}{c}{$\nu^*_{i,j}$} \\[0.5ex] \noalign{\smallskip}\hline\noalign{\smallskip} $(2,-2)$ & $(\Lambda +M)^2(M^2-N^2)$ & $(\Lambda+M)^2(M^2-N^2)$ & $-(M+\Lambda)^2$ \vphantom{$\displaystyle K^{2^3}$} \\ \noalign{\smallskip} $(2,-1)$ & $2N(M+\Lambda)\sqrt{M^2-\Lambda^2}\sqrt{M^2-N^2}$ & $4N~(M+\Lambda)\sqrt{M^2-\Lambda^2}\sqrt{M^2-N^2}$ & $-2\frac{M+\Lambda}{N}~\frac{\sqrt{M^2-\Lambda ^2}}{\sqrt{M^2-N^2}}~(2N^2-M^2)$\\ \noalign{\smallskip}\\ $(2,0)$ & -- & $-2(M^2-\Lambda^2)~(M^2-3N^2)$ & $6 \left(M^2-\Lambda ^2\right)$ \\[1ex] $(2,1)$ & $2N(M-\Lambda ) \sqrt{M^2-\Lambda^2}\sqrt{M^2-N^2}$ & $-4N~(M-\Lambda)\sqrt{M^2-\Lambda^2}\sqrt{M^2-N^2}$ & $2\frac{M-\Lambda}{N}~\frac{\sqrt{M^2-\Lambda ^2}}{\sqrt{M^2-N^2}}~(2N^2-M^2)$ \\[1ex] $(2,2)$ & $-(M-\Lambda )^2(M^2-N^2)$ & $(M-\Lambda)^2(M^2-N^2)$ & $-(M-\Lambda)^2$ \\[1ex] $(0,2)$ & $-2(M^2-\Lambda ^2)~(M^2-N^2)$ & -- & $-2 \left(M^2-\Lambda ^2\right)$ \\[1ex] $(0,1)$ & $4 N~\Lambda \sqrt{M^2-\Lambda ^2}\sqrt{M^2-N^2}$ & -- & $4\frac{\Lambda}{N}~\frac{\sqrt{M^2-\Lambda ^2}}{\sqrt{M^2-N^2}}~(2N^2-M^2)$ \\[2ex] \hline \end{tabular}\\[1ex] \par \begin{tabular}{@{}ccc@{}} \multicolumn{1}{c}{$(i,j)$} & \multicolumn{1}{c}{$\lambda^*_{i,j}$} & \multicolumn{1}{c}{$\mu^*_{i,j}$} \\[0.5ex] \hline\noalign{\smallskip} $(2,-2)$ & $(M+\Lambda)~(M^2-N^2)$ & $(M+\Lambda)\left[M~N^2-\Lambda~(M^2-2N^2)\right]$ \vphantom{$\displaystyle K^{K^K}$} \\[1ex] $(2,-1)$ & $2N~\frac{\sqrt{M^2-N^2}}{\sqrt{M^2-\Lambda^2}}~(M^2-2\Lambda^2-M~\Lambda) $ & $-2N~\sqrt{M^2-\Lambda^2}\sqrt{M^2-N^2}\left[M+2\Lambda-\left(\frac{\Lambda^2}{M^2-\Lambda^2}+\frac{N^2}{M^2-N^2}\right)(M+\Lambda)\right]$ \\[1ex] $(2,0)$ & $2\Lambda~(M^2-3N^2)$ & $-6M^2N^2-2\Lambda^2(M^2-6N^2)$ \\[1ex] $(2,1)$ & $2N~\frac{\sqrt{M^2-N^2}}{\sqrt{M^2-\Lambda^2}}~(M^2-2\Lambda^2+M~\Lambda) $ & $2N~\sqrt{M^2-\Lambda^2}\sqrt{M^2-N^2}\left[M-2\Lambda-\left(\frac{\Lambda^2}{M^2-\Lambda^2}+\frac{N^2}{M^2-N^2}\right)(M-\Lambda)\right]$ \\[1ex] $(2,2)$ & $-(M-\Lambda )~(M^2-N^2)$ & $(M-\Lambda)\left[M~N^2+(M^2-2N^2)~\Lambda\right]$ \\[1ex] $(0,2)$ & $-2\Lambda~(M^2-N^2)$ & $2M^2N^2+2\Lambda^2(M^2-2N^2)$ \\[1ex] $(0,1)$ & $-4N~\frac{\sqrt{M^2-N^2}}{\sqrt{M^2-\Lambda^2}}~(M^2-2\Lambda^2)$ & $4N~\Lambda~\sqrt{M^2-\Lambda^2}\sqrt{M^2-N^2}\left(2-\frac{\Lambda^2}{M^2-\Lambda^2}-\frac{N^2}{M^2-N^2}\right)$ \\ \noalign{\smallskip}\hline \end{tabular} \vspace*{4mm} \end{table}