\begin{table}%t2 \caption{\label{t:poisson3}Non-zero values of the coefficients in Eqs. (\protect\ref{Mu})$-$(\protect\ref{lambda}).} \small%\centering \par \begin{tabular}{@{}ccccc@{}} \hline\hline\noalign{\smallskip} \multicolumn{1}{c}{$(i,j)$} & \multicolumn{1}{c}{$M_{i,j}$} & \multicolumn{1}{c}{$\Lambda_{i,j}$} & \multicolumn{1}{c}{$\nu_{i,j}$} & \multicolumn{1}{c}{$\lambda_{i,j}$} \\[0.5ex] \hline $(2,-2)$ & $-\sin^2\!J~(1+\cos{I})^2$ & $-\sin^2\!J(1+\cos{I})^2$ & $(1+\cos{I})^2\cos{J}$ & $-(1+\cos{I})\sin^2\!J$ \vphantom{$\displaystyle K^{K^K}$} \\[1ex] $(2,-1)$ & $-\sin{I}\sin2J~(1+\cos{I})$ & $-2\sin{I}\sin2J(1+\cos{I})$ & $-2(1+\cos{I})\left(2\sin{I}\sin{J}-\frac{\sin{I}}{\sin{J}}\right)$ & $(\cos{I}+\cos2I)~\frac{\sin2J}{\sin{I}}$ \\[1ex] $(2,0)$ & -- & $(2-6\cos^2\!J)\sin^2\!I$ & $-6\sin^2\!I\cos{J}$ & $\cos{I}(4-6\sin^2\!J)$ \\[1ex] $(2,1)$ & $-\sin{I}\sin2J~(1-\cos{I})$ & $2\sin{I}\sin2J(1-\cos{I})$ & $2(1-\cos{I})\left(2\sin{I}\sin{J}-\frac{\sin{I}}{\sin{J}}\right)$ & $-(\cos{I}-\cos2I)~\frac{\sin2J}{\sin{I}}$ \\[1ex] $(2,2)$ & $\sin^2\!J~(1-\cos{I})^2$ & $-\sin^2\!J(1-\cos{I})^2$ & $(1-\cos{I})^2\cos{J}$ & $(1-\cos{I})\sin^2\!J$ \\[1ex] $(0,2)$ & $2\sin^2\!I\sin^2\!J$ & -- & $2\sin^2\!I\cos{J}$ & $2\cos{I}\sin^2\!J$ \\[1ex] $(0,1)$ & $-\sin2I\sin2J$ & -- & $4\cos{I}\left(2\sin{I}\sin{J}-\frac{\sin{I}}{\sin{J}}\right)$ & $(2-4\cos^2\!I)\frac{\sin2J}{\sin{I}}$ \\[0.5ex] \hline \end{tabular} \end{table}