\begin{table}%t3 \caption{\label{t:poisson4} Non-zero values of the coefficients in Eqs. (\protect\ref{mu}) and (\protect\ref{delta}).} \small%\centering \par \begin{tabular}{@{}ccc@{}} \hline\hline\noalign{\smallskip} \multicolumn{1}{c}{$(i,j)$} & \multicolumn{1}{c}{$\mu_{i,j}$} & \multicolumn{1}{c}{$\delta_{i,j}\times(i~n+j~a_1M)/(a_1M)$} \\[0.5ex] \hline $(2,-2)$ & $-(1+\cos{I})~(\cos^2\!J+\cos{I}\cos2J)$ & $\sin^2\!J~(1+\cos{I})^2$ \vphantom{$\displaystyle K^{K^K}$} \\[1ex] $(2,-1)$ & $-2\left[\frac{\sin{I}}{\sin{J}}-(\cos{I}-2\cos2I)\frac{\sin{J}}{\sin{I}}\right]\cos{J}~(1+\cos{I})$ & $\sin{I}\sin2J~(1+\cos{I})$ \\[1ex] $(2,0)$ & $2\left[3\cos^2\!J+\cos^2\!I(1-6\cos^2\!J)\right]$ & --- \\[1ex] $(2,1)$ & $2\left[\frac{\sin{I}}{\sin{J}}+(\cos{I}+2\cos2I)\frac{\sin{J}}{\sin{I}}\right]\cos{J}~(1-\cos{I})$ & $\sin{I}\sin2J~(1-\cos{I})$ \\[1ex] $(2,2)$ & $-(1-\cos{I})~(\cos^2\!J-\cos{I}\cos2J)$ & $-\sin^2\!J~(1-\cos{I})^2$ \\[1ex] $(0,2)$ & $-2\left[\sin^2\!I\cos^2\!J+\cos^2\!I\sin^2\!J\right]$ & $-2\sin^2\!J~\sin^2\!{I}$ \\[1ex] $(0,1)$ & $4\cos{I}\cos{J}\left[\frac{\sin{I}}{\sin{J}}+(1-4\sin^2\!I)\frac{\sin{J}}{\sin{I}}\right]$ & $\sin2I\sin2J$ \\[0.5ex] \hline \end{tabular} \vspace*{4mm} \end{table}