\begin{table}%t5 \caption{\label{t:amplitudesceres}Coefficients of the periodic terms in the analytical solution for Ceres. } \small%\centering \par \begin{tabular}{@{}ccrrrrr@{}} \hline\hline\noalign{\smallskip} && \multicolumn{5}{c}{\underline{\hspace{5cm} Coefficient \hspace{5cm} }} \\ \multicolumn{1}{c}{Frequency $(i,j)$} & \multicolumn{1}{c}{Period (days)} & \multicolumn{1}{c}{$M/\epsilon$} & \multicolumn{1}{c}{$\Lambda/\epsilon$} & \multicolumn{1}{c}{$\mu-\delta$} & \multicolumn{1}{c}{$\nu$} & \multicolumn{1}{c}{$\lambda$} \\ \hline $(2,0)$ & $840.250$ & \multicolumn{1}{c}{---} & $ 9.4943\times 10^{+04}$ & $-1.0836\times 10^{-05}$ & $-4.4828\times 10^{-08}$ &\vphantom{$K^{K^K}$} $ 1.0896\times 10^{-05}$ \\ $(2,-1)$ & $0.35380$ & $-7.6334\times 10^{-02}$ & $-1.5267\times 10^{-01}$ & $ 2.4028\times 10^{-06}$ & $-2.4028\times 10^{-06}$ & $-8.7482\times 10^{-12}$\\ $(0,1)$ & $0.35365$ & $ 7.6249\times 10^{-02}$ & \multicolumn{1}{c}{--} & $ 2.4001\times 10^{-06}$ & $-2.4001\times 10^{-06}$ & $-8.7265\times 10^{-12}$\\ $(2,1)$ & $0.35350$ & $ 5.2298\times 10^{-05}$ & $-1.0460\times 10^{-04}$ & $ 1.6462\times 10^{-09}$ & $-1.6462\times 10^{-09}$ & $-1.8014\times 10^{-14}$\\ $(2,-2)$ & $0.17686$ & $-7.2861\times 10^{-05}$ & $-7.2861\times 10^{-05}$ & $ 2.2935\times 10^{-09}$ & $-2.2935\times 10^{-09}$ & $ 1.1475\times 10^{-17}$\\ $(0,2)$ & $0.17683$ & $-9.9901\times 10^{-08}$ & \multicolumn{1}{c}{--} & $-3.1446\times 10^{-12}$ & $ 3.1446\times 10^{-12}$ & $ 1.1465\times 10^{-17}$\\ $(2,2)$ & $0.17679$ & $-3.4244\times 10^{-11}$ & $ 3.4244\times 10^{-11}$ & $-1.0779\times 10^{-15}$ & $ 1.0779\times 10^{-15}$ & $ 7.8652\times 10^{-21}$\\ \hline \end{tabular} \tablefoot{The coefficients of $M$ and $\Lambda$ are scaled by $\epsilon=-5.40548\times10^{15}~{\rm kg~m^2/s^2}$ and are given in seconds; those of the angles are not scaled and are given in radians.} \end{table}