\begin{table}%t3 \caption{\label{tab:curvedspectra} Special fit results.} %%\centerline {\small \begin{tabular}{llccccccc} \hline\hline\\[-3mm] Data Set & Used Fit & $f_0$ & $\alpha^{(')}$ & $\beta$ & $E_{\rm cut}$ [TeV] & $\chi^2_{\rm red, fit}$ & Likelihood & $E_{\rm peak}$ [TeV] \\ \hline \multirow{4}*{April 27, 2006} & PL & $9.54\pm0.52$ & $1.92\pm0.07$ & & & \phantom{0}5.3/4 && \\ & log-$P$ & $9.35\pm0.55$ & $1.54\pm0.19$ & $0.59\pm0.29$ & & 0.48/3 & $96\%$ & \phantom{0} $1.2\pm 0.7$ \phantom{0}\\ & log-$P$ apex & $11.5\pm0.9\phantom{0}$ & $0.26\pm0.17$ & & & 0.48/3 & $96\%$ & $1.2\pm0.2$ \\ & PL+C & $11.3\pm1.2 \phantom{0}$ & $1.44\pm0.24$ && $2.6\pm1.3$ & 0.34/3 & $96\%$ & \phantom{0} $1.4\pm 1.0$ \phantom{0} \\\hline \multirow{4}*{All April Data} & PL & $4.53\pm0.07$ & $2.07\pm0.04$ & & & \phantom{0} 16/5&& \\ & log-$P$ & $4.75\pm0.12$ & $1.89\pm0.06$ & $0.39\pm0.11$ & & \phantom{0}1.2/4 & $99\%$ & $0.69\pm 0.14$ \\ & log-$P$ apex & $4.84\pm0.16$ & $0.41\pm0.11$ & & & \phantom{0}1.2/4 & $99\%$ & $0.69\pm0.06$ \\ & PL+C & $5.36\pm0.31$ & $1.77\pm0.09$ & & $3.6\pm1.1$ & \phantom{0}1.8/4 & $99\%$& \phantom{0} $0.80\pm 0.42$ \phantom{0} \\\hline \multirow{4}*{High-State Nights} & PL & $8.19\pm0.28$ & $1.93\pm0.05$ & & & \phantom{0}6.0/4 && \\ & log-$P$ & $8.46\pm0.32$ & $1.79\pm0.09$ & $0.29\pm0.15$ & & \phantom{0}2.0/3 & $94\%$ & \phantom{0} $1.1\pm 0.6$ \phantom{0} \\ & log-$P$ apex & $9.21\pm0.47$ & $0.52\pm0.17$ & & & \phantom{0}2.0/3 & $94\%$ & $1.1\pm0.3$ \\ & PL+C & $9.02\pm0.64$ & $1.75\pm0.12$ & & $6.1\pm4.0$ & \phantom{0}3.1/3 & $91\%$& \phantom{0} $1.5\pm 1.2$ \phantom{0}\\\hline \multirow{4}*{Low-State Nights} & PL & $3.39\pm0.10$ & $2.17\pm0.05$ & & & \phantom{0}6.6/4 && \\ & log-$P$ & $3.55\pm0.13$ & $2.02\pm0.08$ & $0.38\pm0.17$ & & \phantom{0}1.1/3 & $97\%$ & $0.48\pm 0.12$ \\ & log-$P$ apex & $3.55\pm0.13$ & $0.41\pm0.16$ & & & \phantom{0}1.1/3 & $97\%$& $0.48\pm0.12$ \\ & PL+C & $4.15\pm0.40$ & $1.85\pm0.15$ & & $2.9\pm1.3$ & 0.75/3 & $97\%$ & $0.45\pm 0.47$ \\ \hline \end{tabular}} \tablefoot{Results of a power-law fit (Eq.~(\ref{eq:2})), a log-parabolic fit (Eq.~(\ref{eq:4}) $\times$ $(E/E_0)^2$), a log-parabolic fit in apex form (Eq.~(\ref{eq:apex})) and a power-law fit with an exponential cutoff ((Eq.~(\ref{eqn:PL+C}) $\times$ $(E/E_0)^2$) in $E^2 {\rm d}F/{\rm d}E$ after EBL de-absorption for special data sets. $f_0$ is given in units of $10^{-11}~{\rm TeV}^{-1}~{\rm cm}^{-2}~ {\rm s}^{-1}$; $\alpha$, $\alpha'$, $\beta$, $E_{\rm cut}$ and $E_{\rm peak}$ are the fit parameters as stated in the text, and Likelihood denotes the probability of a likelihood ratio test. The on/off normalization factor is $1/3$, $E_0=0.5$~TeV.} \end{table}