\begin{table}%t6 %\centering \par \caption {\label{table6}Correlation summary.} \begin{tabular}{lrrrrrrr} \hline \hline \noalign{\smallskip} Parameter & \# points & \# upper limits & $P$(Cox Hazard) & $P$(Kendall tau) & $P$(Spearman rho) & Slope & Intercept \\ \hline $\log L_{\rm X, 0.3-10, unabs}^a$ & 60 & 24 & {\bf 0.016} & {\it 0.055} & {\it 0.059} & 0.50~$\pm$~0.15 & 12.99 \\ \quad only jets\tablefootmark{a} & 12 & 2 & {\bf 0.015} & {\bf 0.027} & {\bf 0.037} & 0.77~$\pm$~0.27 & 5.75 \\ \quad without jets\tablefootmark{a} & 50 & 22 & {\bf 0.011} & {\bf 0.043} & {\it 0.056} & 0.51~$\pm$~0.14 & 12.77 \\ $\log L_{\rm X, 0.3-10, abs}$\tablefootmark{a} & 60 & 24 & {\bf 0.020} & {\bf 0.029} & {\bf 0.050} & 0.51~$\pm$~0.17 & 13.02 \\ \quad only jets\tablefootmark{a} & 12 & 2 & {\bf 0.031} & {\bf 0.041} & {\it 0.076} & 0.78~$\pm$~0.26 & 5.84 \\ \quad without jets\tablefootmark{a} & 50 & 22 & {\bf 0.022} & {\it 0.072} & {\it 0.091} & 0.44~$\pm$~0.18 & 15.06 \\ $\log \dot{M}_{\rm acc}$ & 36 & 9 & 0.273 & {\bf 0.037} & {\bf 0.046} & 0.35~$\pm$~0.11 & 31.14 \\ \quad only jets & 12 & 2 & 0.789 & 0.782 & 0.637 & 0.28~$\pm$~0.27 & 30.90 \\ \quad without jets & 24 & 7 & 0.181 & 0.639 & 0.717 &--0.05~$\pm$~0.07 & 27.70 \\ $\log (\dot{M}_{\rm acc}L_{\rm X})$& 33& 9 & {\it 0.053} & {\bf 0.012} & {\bf 0.021} & 0.44~$\pm$~0.10 & 18.59 \\ \quad only jets & 11 & 2 & {\it 0.080} & {\it 0.059} & {\bf 0.048} & 0.45~$\pm$~0.16 & 18.51 \\ \quad without jets & 22 & 7 & 0.431 & 0.942 & 0.934 &--0.02~$\pm$~0.09 & 28.66 \\ {\it EW}(H$\alpha$) & 55 & 18 & 0.470 & 0.223 & 0.293 & 0.26~$\pm$~0.18 & 27.82 \\ \quad only jets & 12 & 2 & 0.605 & 0.836 & 0.789 & 0.11~$\pm$~0.55 & 28.63 \\ \quad without jets & 43 & 16 & 0.596 & 0.889 & 0.804 &--0.04~$\pm$~0.14 & 28.15 \\ {\it EW}(O~{\sc i}$_t$) & 31 & 9 & {\bf 0.004} & {\bf 0.008} & {\bf 0.007} & 0.66~$\pm$~0.17 & 28.37 \\ {\it EW}(O~{\sc i}$_t$)$L_{\rm X}$ & 25 & 8 & {\bf 0.002} & {\bf 0.003} & {\bf 0.009} & 0.78~$\pm$~0.15 & 5.01 \\ {\it EW}(O~{\sc i}$_f$) & 17 & 4 & {\it 0.091} & 0.139 & 0.137 & 0.35~$\pm$~0.13 & 28.49 \\ {\it EW}(O~{\sc i}$_f$)$L_{\rm X}$ & 16 & 4 & 0.121 & 0.118 & 0.140 & 0.45~$\pm$~0.16 & 15.15 \\ $\log L_{{\rm OI}_t}$ & 28 & 8 & {\bf 0.015} & {\bf 0.025} & {\bf 0.034} & 0.42~$\pm$~0.10 & 29.72 \\ $\log (L_{{\rm OI}_t}L_{\rm X}$) & 24 & 7 & {\bf 0.007} & {\bf 0.015} & {\bf 0.027} & 0.46~$\pm$~0.10 & 16.47 \\ $\log L_{{\rm OI}_f}$ & 17 & 4 & 0.208 & 0.139 & 0.176 & 0.23~$\pm$~0.09 & 29.41 \\ $\log (L_{{\rm OI}_f}L_{\rm X}$) & 16 & 4 & 0.179 & 0.118 & 0.137 & 0.33~$\pm$~0.12 & 20.03 \\ $\log \dot{M}_{\rm loss}$ & 13 & 3 & 0.110 & {\it 0.067} & {\it 0.100} & 0.44~$\pm$~0.14 & 32.06 \\ $\log (\dot{M}_{\rm loss}L_{\rm X}$)& 12& 3 & {\it 0.088} & 0.215 & 0.263 & 0.46~$\pm$~0.13 & 18.48 \\ $\log N_{\rm H}$ & 64 & 24 & 0.206 & 0.157 & 0.192 & 0.28~$\pm$~0.18 & 28.35 \\ $\log (N_{\rm H}L_{\rm X})$\tablefootmark{a} & 60 & 24 & {\it 0.051} & 0.104 & 0.126 & 0.27~$\pm$~0.10 & 20.18 \\ \noalign{\smallskip}\hline \end{tabular} \tablefoot {\tablefoottext{a}{Four high-$L_{\rm [Ne~II]}$ objects have not been considered for these correlations, namely T~Tau S, DG~Tau, EC~82, and Sz~102 (see text and figures for details). Sz~102 has not been considered in any of the correlations that involve $L_{\rm X}$.}\\ The number of points (``\# points'') includes upper limits, detailed in the column ``\# upper limits''.\\ $L_{\rm X}$ refers to $L_{\rm X, 0.3{-}10, unabs}$. $P$ is the probability that the correlation is obtained by chance. $P$ values up to~5\% and between~5\% and~10\% are printed in boldface and italics, respectively. }\vspace*{-1.5mm} \end{table}