\begin{table}%t2 %\centering \par \caption{\label{tab:psdmodel}Fit parameters of the PSD (Fig.~\ref{fig:psd_fit.eps}).} \begin{tabular}{ll} \hline\hline \noalign{\smallskip} Component & Value \\ \hline\\[-3mm] Constant & $94.67^{+0.51}_{-0.54} $ \\[0.7mm] Powerlaw (Norm) & $0.296^{+0.033}_{-0.032}$ \\ Powerlaw (Gamma) & $1.191 \pm {0.019} $ \\ Lorentz 1 (Norm) & $2.70^{+0.16}_{-0.17}$ \\ Lorentz 1 (Freq) (Hz) & $1/283.5$ \\ Lorentz 1 (Width) (Hz) & $(0.57\pm0.03)\times10^{-2}$ \\ Lorentz 2 (Norm) & $0.90 \pm 0.13 $ \\ Lorentz 2 (Freq) (Hz) & $1/283.5$ \\ Lorentz 2 (Width) (Hz) & $(2.09^{+0.49}_{-0.38})\times10^{-5}$\\[0.7mm] Lorentz 3 (Norm) & $10.76^{+0.84}_{-1.44}$ \\ Lorentz 3 (Freq) (Hz) & $2/283.5$ \\ Lorentz 3 (Width) (Hz) & $(1.91^{0.33}_{-0.15})\times10^{-5}$ \\ Lorentz 4 (Norm) & $0.254 \pm 0.020$ \\ Lorentz 4 (Freq) (Hz) & 3/283.5 \\ Lorentz 4 (Width) (Hz) & $(1.51^{+0.32}_{-0.28})\times10^{-5}$ \\ Lorentz 5 (Norm) & $0.642 \pm 0.033$ \\ Lorentz 5 (Freq) (Hz) & 4/283.5 \\ Lorentz 5 (Width) (Hz) & $(2.47^{+0.22}_{-0.20})\times10^{-5}$ \\ Lorentz 6 (Norm) & $(20.09 \pm 0.82)\times10^{-2} $ \\ Lorentz 6 (Freq) (Hz) & 6/283.5 \\ Lorentz 6 (Width) (Hz) & $(2.00_{-0.20}^{+0.21})\times10^{-5}$ \\[0.25mm] \hline \end{tabular} \end{table}