\begin{table}%t1 \caption{\label{tab1}Slope $s$ of a power law fit ($P\propto t_{\rm p}^{-s}$) of the~$t_{\rm p}$ -- $P$~diagram with and without the assumption of the DLR (Eq.~(8)) for pulses.} \par %\centering \par \begin{tabular}{ccc} \hline \hline \noalign{\smallskip} $L_{\rm min}$ (erg~s$^{-1}$) & $s$ (with DLR) & $s$ (without DLR)\\ \hline $10^{51}$ & 0.27 & 0.091 \\ $10^{50.5}$ & 0.24 & 0.093 \\ $10^{50}$ & 0.22 & 0.096 \\ \hline $L_{\rm max}$ (erg~s$^{-1}$) & & \\ $10^{53.5}$ & 0.24 & 0.093 \\ $10^{54}$ & 0.22 & 0.096 \\ \hline $\delta$ & & \\ 2.0 & 0.27 & 0.081 \\ 1.5 & 0.27 & 0.096 \\ \hline $E_{\rm p}$ (keV) & & \\ 400 & 0.33 & 0.089 \\ 600 & 0.33 & 0.088 \\ 800 & 0.33 & 0.096 \\ \hline $\sigma_{\rm t}$ & & \\ 0.3 & 0.27 & -- \\ 0.6 & 0.22 & -- \\ 1.0 & 0.15 & -- \\ 1.5 & 0.09 & -- \\ \hline Threshold & & \\ :2 & 0.30 & 0.11 \\ x2 & 0.24 & 0.085 \\ \hline \end{tabular} \tablefoot {In the six blocks we respectively vary the lower (i); and upper (ii) limits of the pulse luminosity function; (iii) the slope of the luminosity function; (iv) the central value of a log-normal distribution for $E_{\rm p}$; (v) the dispersion of the DLR; (vi) the detection threshold. The first row corresponds to our reference case with $L_{\rm min}=10^{51}$~erg~s $^{-1}$, $L_{\rm max}=10^{53}$~erg~s$^{-1}$, $\delta=1.7$, $\sigma_{\rm t}=0.3$~dex. It also assumes the validity of the Amati-like relation (Eq.~(7)) with a dispersion of 0.3~dex and adopts the threshold criterion for BATSE given by Band (\cite{Band03}). In each block only one parameter is varied, the others keeping the values corresponding to the reference case.} \end{table}