\begin{table}%t1 %\centering \par \caption{\label{tab1}Mean features of the generated haloes at $z=0$ in test $1$. } \small%\centering \par \begin{tabular}{ccccccccccc} \hline \hline\noalign{\smallskip} Halo & $x$ & $y$ & $z$ & $M_{\rm vir}$ & $r_{\rm vir}$ & {\it C} & $\alpha$ & $\beta$ & $N_{\rm DM}$ & $\rm level$ \\ & (Mpc) & (Mpc) & (Mpc) & $(10^{14}~M_\odot)$ & (Mpc) & & & & \\ \hline H1 & 0.0 & 0.0 & 0.0 & 20.8 & 2.07 & 6.12 (6.25) & 0.98 & 2.06 & 400~000 & 0 \\ H2 & --10.0 & --10.0 & --10.0 & 5.19 & 1.30 & 6.92 (7.01) & 0.97 & 2.04 & 100~000 & 0 \\ H3 & 25.0 & 25.0 & 25.0 & 1.29 & 0.82 & 7.88 (7.87) & 1.006 & 1.99 & 25000 & 1 \\ H4 & 10.0 & 10.0 & 10.0 & 0.78 & 0.69 & 8.36 (8.22) & 0.992 & 1.97 & 15000 & 2 \\ \hline \end{tabular} \tablefoot{Column 1 contains the halo name; Cols.~2--4 stand for the $x$, $y$, and $z$ coordinates respectively of the centre of mass of each halo in units of Mpc; Col. 5 shows the total mass within the virial radius in units of $10^{14}~M_\odot$; Col.~6 the virial radius in units of Mpc; Col.~7 the concentration given by the fitting and between parenthesis the concentration of the input density profile; Col.~8 the density profile inner slope ($\alpha$) given by the fitting; Col.~9 the density profile outer slope ($\beta$) of the fitting; Col.~10 the number of dark matter particles within each halo; Col.~11 the AMR level on which the halo is located.} \end{table}