\begin{table}%t5 \par \caption{\label{t:tddd}Figures of merit (absolute values) for all reference, initial, and extrapolated fields. } \par %%\centering \par \begin{tabular}{cccccccccc} \hline \hline \noalign{\smallskip} Field & {HFT apex} & {CFL apex } & {$\langle~\Phi~\rangle / \pi$} & {$\tilde n$} & {$1-E_{\rm M}$} & {$\sigma_J \times 10^{2} $} & {$E_{\rm mag}$} & {$H_{\rm mag}$} & {$\langle~|f_i|~\rangle \times 10^{5}$} \\ \hline \multicolumn{10}{c}{High\_HFT}\\ Reference & 0.1458 & 1.143 & --2.146 & 2.519 & 1.0000 & 0.5062 & 10.095 & 3.253 & 4.679 \\ MF Schmidt & 0.1430 & 1.191 & --2.192 & 2.617 & 0.9561 & 1.5481 & 10.117 & 3.105 & 6.044 \\ \hline \multicolumn{10}{c}{Low\_HFT}\\ Reference & 0.0635 & 1.137 & --2.128 & 2.435 & 1.0000 & 0.3789 & 10.087 & 3.197 & 4.303 \\ MF Schmidt & 0.0639 & 1.130 & --2.121 & 2.340 & 0.9645 & 0.7333 & 10.050 & 3.055 & 6.899 \\ MF Pot Seehafer&0.0624 & 1.295 & --2.176 & 2.008 & 0.9355 & 4.1202 & 10.319 & 3.241 & 16.18 \\ MF Lin Seehafer&0.0622 & 1.341 & --2.192 & 1.537 & 0.9296 & 4.5231 & 10.315 & 3.416 & 14.47 \\ MF TD\_ex & 0.0629 & 1.183 & --2.183 & 2.494 & 0.9284 & 1.1770 & 10.237 & 2.954 & 11.98 \\ \hline \multicolumn{10}{c}{Low\_HFT initial field}\\ Schmidt & \dots & \dots & \dots& 1.928 & 0.7246 & \dots & 7.958 & 0 & 277.9 \\ Pot Seehafer & \dots & \dots & \dots& 2.512 & 0.6278 & \dots & 8.143 & 0 & 1.247 \\ Lin Seehafer & \dots & \dots & \dots& 4.130 & 0.6665 & \dots & 8.267 & 2.880 & 1.225 \\ \hline \multicolumn{10}{c}{No\_HFT}\\ Reference & \dots & 1.131 & --2.111 & 2.350 & 1.0000 & 0.2951 & 10.047 & 3.105 & 4.254 \\ MF Schmidt & \dots & 1.101 & --2.097 & 2.195 & 0.9670 & 1.1756 & 9.972 & 2.955 & 10.28 \\ \hline \multicolumn{10}{c}{BP}\\ Reference & \dots & 1.389 & --1.806 & --0.6210 & 1.0000 & 0.0538 & 7.489 & 3.610 & 7.162 \\ MF Schmidt & \dots & 1.385 & --1.814 & --0.6242 & 0.9460 & 0.8003 & 7.487 & 3.509 & 10.05 \\ \hline \multicolumn{10}{c}{Unstable}\\ Reference ini& 0.1705 & 1.008 & --2.853 & 2.916 & 1.0000 & 3.4610 & 3.286 & 24.21 & 3.841 \\ Reference fin& \dots & \dots & \dots& 2.410 & 1.0000 & 22.116 & 2.205 & 23.69 &16.86 \\ MF Schmidt max & 0.0984 & 0.4095&--4.115 & 1.992 & 0.7693 & 13.140 & 2.540 & 25.35 &94.96 \\ MF Schmidt min & \dots & \dots & \dots& \dots & 0.6266 & 27.396 & 1.843 & 23.08 &115.9\\ \hline \end{tabular} \tablefoot {In addition to the definitions given in Sect.~\ref{s:results}, the following naming conventions are used: ``MF'': nonlinear magnetofrictional extrapolation; ``Pot'' and ``Lin'': potential and linear extrapolation, respectively; ``Schmidt'' and ``Seehafer'': two methods used to compute the initial field for MF; for the Unstable case discussed in Sect.~\ref{s:unstable}: ``Reference ini'': reference field after the initial relaxation; ``Reference fin'': reference field at the end of the MHD~simulation; ``MF Schmidt max'' and ``MF Schmidt min'': MF corresponding to the maximum and minimum energy of the reconstructed fields, respectively. Missing values represent ill-defined quantities for the respective equilibria. } \vspace*{4mm} \end{table}