\begin{table}%t4 %%\centering \par \caption{\label{compmasses}Derived inclination angles, companion masses and likely nature of the companions.} \par \begin{tabular}{llllllll} \hline\hline \noalign{\smallskip} System & $P^{*}$ & $M_{\rm sdB}$ & $i$ & $M_{\rm comp}$ & $i_{\rm max}$ & $M_{\rm comp, min}$ & Companion \\ & [d] & [$M_{\rm \odot}$] & [deg] & [$M_{\rm \odot}$] & [deg] & [$M_{\rm \odot}$] & \\ \hline PG~1017$-$086\tablefootmark{12} & 0.07 & $>$0.47 & $<$73 & $>$0.06 & & & MS/BD\tablefootmark{r} \\ KPD~1930$+$2752\tablefootmark{6} & 0.10 & $\rm 0.47_{-0.02}^{+0.05}$ & $\rm 77_{-4}^{+4}$ & $\rm 0.94_{-0.03}^{+0.02}$ & & & WD\tablefootmark{el} \\ HS~0705$+$6700\tablefootmark{3} & 0.10 & 0.48 & $\rm 65_{-16}^{+25}$ & $\rm 0.15_{-0.03}^{+0.05}$ & & & MS\tablefootmark{r,ec} \\ PG~1336$-$018\tablefootmark{2,16} & 0.10 & 0.459 & $<$90 & $>$0.12 & & & MS\tablefootmark{r} \\ HW~Vir\tablefootmark{4} & 0.12 & 0.53 & $\rm 75_{-10}^{+15}$ & $\rm 0.155_{-0.015}^{+0.015}$ & & & MS\tablefootmark{r,ec} \\ PG~1043+760\tablefootmark{13} & 0.12 & & $<$78 & $>$0.10 & 90 & 0.06 & WD$^{n}$ \\ BPS~CS~22169$-$0001\tablefootmark{14} & 0.18 & & $\rm 9_{-2}^{+2}$ & $\rm 0.19_{-0.06}^{+0.07}$ & 13 & 0.09 & MS\tablefootmark{r} \\ PG~1432$+$159\tablefootmark{12} & 0.22 & & $\rm 16_{-3}^{+5}$ & $\rm 2.59_{-1.10}^{+2.01}$ & 25 & 0.92 & NS/BH\tablefootmark{n} \\ PG~2345$+$318\tablefootmark{2} & 0.24 & & & & & & WD$^{ec}$ not synchronised\\ PG~1329$+$159\tablefootmark{12} & 0.25 & & $\rm 17_{-2}^{+4}$ & $\rm 0.35_{-0.10}^{+0.10}$ & 26 & 0.16 & MS\tablefootmark{r} \\ HE~0532$-$4503\tablefootmark{11} & 0.27 & & $\rm 14_{-2}^{+2}$ & $\rm 3.00_{-0.92}^{+0.94}$ & 19 & 1.27 & NS/BH\tablefootmark{f} \\ CPD~$-$64~481 & 0.28 & & $\rm 7_{-2}^{+2}$ & $\rm 0.62_{-0.24}^{+0.42}$ & 11 & 0.24 & WD \\ PG~1101$+$249 & 0.35 & & $\rm 26_{-4}^{+6}$ & $\rm 1.67_{-0.58}^{+0.77}$ & 40 & 0.68 & WD/NS/BH\tablefootmark{f} \\ PG~1232$-$136 & 0.36 & & $<$14 & $>$6.00 & 17 & 3.58 & BH$^{f}$ \\ Feige~48\tablefootmark{15} & 0.38 & 0.52 & $\rm 17_{-2}^{+3}$ & $\rm 0.27_{-0.04}^{+0.06}$ & & & MS/WD \\ GD~687\tablefootmark{5,7} & 0.38 & & $\rm 39_{-6}^{+6}$ & $\rm 0.71_{-0.21}^{+0.22}$ & 63 & 0.32 & WD\tablefootmark{f} \\ KPD~1946$+$4340\tablefootmark{1} & 0.40 & & $\rm 71_{-15}^{+19}$ & $\rm 0.67_{-0.08}^{+0.18}$ & 90 & 0.58 & WD$^{el,ec}$\\ HE~0929$-$0424\tablefootmark{11} & 0.44 & & $\rm 23_{-4}^{+5}$ & $\rm 1.82_{-0.64}^{+0.88}$ & 34 & 0.73 & WD/NS/BH$^{f}$ \\ HE~0230$-$4323\tablefootmark{9} & 0.45 & & $\rm 39_{-5}^{+8}$ & $\rm 0.30_{-0.07}^{+0.07}$ & 61 & 0.15 & MS\tablefootmark{r}\\ PG~1743$+$477 & 0.52 & & $<$27 & $>$1.66 & 32 & 1.00 & NS/BH\tablefootmark{f} \\ PG~0001$+$275 & 0.53 & & $\rm 31_{-4}^{+7}$ & $\rm 0.79_{-0.23}^{+0.26}$ & 48 & 0.37 & WD \\ PG~0101$+$039\tablefootmark{8} & 0.57 & & $\rm 40_{-6}^{+9}$ & $\rm 0.72_{-0.20}^{+0.20}$ & 64 & 0.33 & WD\tablefootmark{el,n} \\ PG~1248$+$164 & 0.73 & & $\rm 52_{-12}^{+25}$ & $\rm 0.27_{-0.08}^{+0.10}$ & 90 & 0.12 & MS/WD \\ JL~82\tablefootmark{10} & 0.74 & & $\rm 33_{-5}^{+8}$ & $\rm 0.21_{-0.06}^{+0.06}$ & 51 & 0.10 & MS\tablefootmark{r} \\ TON~S~183 & 0.83 & & $\rm 30_{-5}^{+7}$ & $\rm 0.94_{-0.31}^{+0.39}$ & 47 & 0.40 & WD\tablefootmark{f} \\ PG~1627$+$017 & 0.83 & & $<$34 & $>$0.50 & 45 & 0.32 & WD \\ PG~1116$+$301 & 0.86 & & 90 & $\rm 0.48_{-0.21}^{+0.00}$ & 90 & 0.27 & WD \\ HE~2135$-$3749 & 0.92 & & $\rm 67_{-16}^{+13}$ & $\rm 0.41_{-0.12}^{+0.13}$ & 90 & 0.29 & MS/WD \\ HE~1421$-$1206 & 1.19 & & $\rm 57_{-14}^{+33}$ & $\rm 0.27_{-0.08}^{+0.10}$ & 90 & 0.16 & MS/WD \\ HE~1047$-$0436 & 1.21 & & $\rm 62_{-10}^{+28}$ & $\rm 0.53_{-0.14}^{+0.15}$ & 90 & 0.28 & WD \\ PG~0133$+$114 & 1.24 & $>0.51$ & 90 & $>0.38$ & & & MS/WD/not synchronised? \\ PG~1512$+$244 & 1.27 & & & & & & not synchronised? \\ $[$CW83$]$~1735$+$22 & 1.28 & & & & & & not synchronised \\ HE~2150$-$0238 & 1.32 & & & & & & not synchronised \\ HD~171858 & 1.63 & & $\rm 58_{-14}^{+32}$ & $\rm 0.60_{-0.19}^{+0.25}$ & 90 & 0.37 & WD \\ PG~1716$+$426 & 1.78 & & & & & & not synchronised \\ PB~7352 & 3.62 & & & & & & not synchronised \\ CD~$-$24~731 & 5.85 & & & & & & not synchronised \\ HE~1448$-$0510 & 7.16 & & & & & & not synchronised \\ PHL~861 & 7.44 & & & & & & not synchronised \\ \hline \end{tabular} \tablefoot{If the sdB mass couldn't be constrained with other methods the theoretically predicted mass range of $0.43{-}0.47~{M_{\rm \odot}}$ was taken from Han et~al. (\cite{han1,han2}). The minimum masses of the companions and maximum inclinations of the binaries were calculated for the lowest possible sdB mass ($0.3~{M_{\rm \odot}}$, Han et~al. \cite{han1,han2}). {*}~The orbital periods given here are rounded to the second decimal place. The accurate values are given in Table~\ref{orbit}. Additional constraints to clarify the nature of the unseen companions: $^{r}$ The detection of a reflection effect from a cool MS/BD or a $^{n}$~non-detection to exclude this option. The presence of eclipses $^{ec}$~or ellipsoidal deformations~$^{el}$ in the light curves. No signatures of a main-sequence companion within the given mass range are visible in the flux distribution or in the spectrum~$^{f}$. These informations are taken from \tablefoottext{1}{Bloemen et~al. (\cite{bloemen}),} \tablefoottext{2}{Charpinet et~al. (\cite{charpinet5}),} \tablefoottext{3}{Drechsel et~al. (\cite{drechsel}),} \tablefoottext{4}{Edelmann (\cite{edelmann3}),} \tablefoottext{5}{Farihi et~al. (\cite{farihi}),} \tablefoottext{6}{Geier et~al. (\cite{geier}),} \tablefoottext{7}{Geier et~al. (\cite{geier4}),} \tablefoottext{8}{Geier et~al. (\cite{geier2}),} \tablefoottext{9}{Koen (\cite{koen}),} \tablefoottext{10}{Koen (\cite{koen2}),} \tablefoottext{11}{Lisker et~al. (\cite{lisker}),} \tablefoottext{12}{Maxted et~al. (\cite{maxted3}),} \tablefoottext{13}{Maxted et~al. (\cite{maxted5}),} \tablefoottext{14}{\O stensen (priv. comm.),} \tablefoottext{15}{van Grootel et~al. (\cite{vangrootel}),} and \tablefoottext{16}{Vu\v ckovi\'c et~al. (\cite{vuckovic2}).}} \end{table}