\begin{table}%t2 \caption{\label{tab:errors}Estimated \emph{maximum} values of the ``fluctuation factors'' (a~measure of the uncertainty) in the rate coefficients, given as factors of the rate coefficients in Table~\ref{tab:rates}.} %\centering \par \begin{tabular}{ccccccccccc} \hline \hline \noalign{\smallskip} Initial & \multicolumn{8}{c}{Final state $n^\prime l^\prime$} \\ state $nl$ & 3p & 4s & 3d & 4p & 5s & 4d & 4f & 5p & Na$^+$+H$^-$ \\ \hline 3s & 120--70 & 50--10 & 10 & 20 & 100--10 & 100--10 & 100--10 & $10^3$--100 & 2 \\ 3p & & 2 & 5 & 2 & 5--3 & 100--10 & $10^3$--30 & $10^5$--100 & 2\\ 4s & & & 6 & 2 & 100--10 & $10^4$--400 & $10^4$--100 & $10^5$--$10^3$ & 2\\ 3d & & & & 2 & 20--2 & 100--20 & 10--2 & $10^4$--2 & 2--3 \\ 4p & & & & & 2 & 2 & 2 & 2 & 2 \\ 5s & & & & & & 2 & 2 & 100--2 & 10 \\ 4d & & & & & & & 2 & $10^3$--2 & $10^4$--100 \\ 4f & & & & & & & & 10--2 & 100--40 \\ 5p & & & & & & & & & $10^4$--30 \\ \hline \end{tabular} \tablefoot {The minimum value is estimated to be 0.5 in all cases. If a range is given, the first number corresponds to 2000~K and the second the 8000~K temperature result. For~example, if~the table lists 10$-$2, then the maximum fluctuation factor in the rate coefficient is estimated to be 10 near 2000~K and~2 near~8000~K.} \end{table}