\begin{table}%t15 \caption{\label{dmi}Distance determination.} \par %\centering \par { { \begin{tabular}{l c c c c c c c c c c} \hline\hline \noalign{\smallskip} Object & $M_{\rm bol}^{\rm P}$\tablefootmark{a} & $M_{\rm bol}^{\rm S}$\tablefootmark{a} & $BC_{V}^{\rm P}$\tablefootmark{b} & $BC_{V}^{\rm S}$\tablefootmark{b} & $M_{V}^{\rm P}$\tablefootmark{c} & $M_{V}^{\rm S}$\tablefootmark{c} & $E_{B-V}^{\rm q}$\tablefootmark{d} & $A_{V}^{\rm q}$\tablefootmark{e} & $5 \log[$d$] - 5_V$\tablefootmark{f} & $5 \log[$d$] - 5_I$\tablefootmark{g} \\ & (mag) & (mag) & (mag) & (mag) & (mag) & (mag) & (mag) & (mag) & (mag) & (mag) \\ \hline 4 110409 & $-6.06\pm0.13$ & $-5.35\pm0.13$ & $-3.10\pm0.06$ & $-2.12\pm0.07$ & $-2.96\pm0.08$ & $-3.23\pm0.07$ & $0.207\pm0.009$ & $0.642\pm0.029$ & $19.06\pm0.061$ & $19.06\pm0.057$\\ 4 113853 & $-4.00\pm0.16$ & $-2.85\pm0.18$ & $-2.36\pm0.08$ & $-1.60\pm0.09$ & $-1.64\pm0.10$ & $-1.25\pm0.10$ & $0.194\pm0.009$ & $0.601\pm0.029$ & $19.00\pm0.078$ & $18.99\pm0.075$\\ 4 117831 & $-2.62\pm0.11$ & $-2.59\pm0.15$ & $-1.90\pm0.05$ & $-1.85\pm0.07$ & $-0.73\pm0.08$ & $-0.74\pm0.09$ & $0.064\pm0.006$ & $0.198\pm0.018$ & $18.99\pm0.062$ & $18.97\pm0.061$\\ 4 121084 & $-5.43\pm0.09$ & $-4.94\pm0.10$ & $-3.06\pm0.04$ & $-2.93\pm0.05$ & $-2.37\pm0.07$ & $-2.00\pm0.07$ & $0.187\pm0.005$ & $0.580\pm0.017$ & $19.28\pm0.051$ & $19.27\pm0.049$\\ 4 121110 & $-5.08\pm0.12$ & $-3.89\pm0.13$ & $-2.83\pm0.06$ & $-2.55\pm0.07$ & $-2.25\pm0.07$ & $-1.34\pm0.08$ & $0.158\pm0.008$ & $0.490\pm0.023$ & $19.08\pm0.057$ & $19.08\pm0.054$\\ 4 121461 & $-3.30\pm0.17$ & $-3.08\pm0.20$ & $-2.34\pm0.08$ & $-2.22\pm0.10$ & $-0.96\pm0.11$ & $-0.86\pm0.12$ & $0.147\pm0.009$ & $0.456\pm0.027$ & $19.05\pm0.083$ & $19.09\pm0.080$\\ 4 159928 & $-5.69\pm0.14$ & $-3.90\pm0.15$ & $-2.88\pm0.07$ & $-2.12\pm0.08$ & $-2.81\pm0.08$ & $-1.78\pm0.09$ & $0.168\pm0.007$ & $0.521\pm0.021$ & $19.29\pm0.066$ & $19.30\pm0.064$\\ 4 160094 & $-4.57\pm0.20$ & $-3.44\pm0.23$ & $-2.77\pm0.10$ & $-2.40\pm0.11$ & $-1.80\pm0.13$ & $-1.04\pm0.14$ & $0.075\pm0.009$ & $0.233\pm0.027$ & $18.96\pm0.102$ & $18.97\pm0.100$\\ 4 163552 & $-5.02\pm0.19$ & $-4.78\pm0.19$ & $-2.48\pm0.10$ & $-2.47\pm0.10$ & $-2.55\pm0.10$ & $-2.30\pm0.11$ & $0.187\pm0.008$ & $0.580\pm0.026$ & $18.35\pm0.079$ & $18.36\pm0.077$\\ 4 175149 & $-6.26\pm0.08$ & $-6.07\pm0.09$ & $-3.15\pm0.02$ & $-2.79\pm0.03$ & $-3.11\pm0.07$ & $-3.29\pm0.07$ & $0.053\pm0.007$ & $0.164\pm0.022$ & $18.52\pm0.057$ & $18.54\pm0.054$\\ 4 175333 & $-2.93\pm0.15$ & $-2.03\pm0.19$ & $-2.22\pm0.07$ & $-1.89\pm0.09$ & $-0.71\pm0.09$ & $-0.14\pm0.11$ & $0.070\pm0.007$ & $0.217\pm0.022$ & $18.61\pm0.074$ & $18.60\pm0.072$\\ 5 016658 & $-3.70\pm0.13$ & $-3.23\pm0.14$ & $-2.17\pm0.06$ & $-2.19\pm0.06$ & $-1.53\pm0.08$ & $-1.04\pm0.10$ & $0.080\pm0.006$ & $0.248\pm0.019$ & $19.13\pm0.068$ & $19.15\pm0.066$\\ 5 026631 & $-5.78\pm0.07$ & $-4.33\pm0.08$ & $-2.85\pm0.03$ & $-2.12\pm0.04$ & $-2.93\pm0.04$ & $-2.20\pm0.05$ & $0.105\pm0.004$ & $0.326\pm0.013$ & $19.13\pm0.036$ & $19.17\pm0.034$\\ 5 032412 & $-6.50\pm0.05$ & $-5.61\pm0.07$ & $-3.32\pm0.01$ & $-3.03\pm0.02$ & $-3.18\pm0.05$ & $-2.58\pm0.06$ & $0.250\pm0.006$ & $0.775\pm0.019$ & $19.19\pm0.044$ & $19.22\pm0.041$\\ 5 038089 & $-6.38\pm0.04$ & $-6.02\pm0.05$ & $-2.98\pm0.01$ & $-3.01\pm0.02$ & $-3.40\pm0.03$ & $-3.01\pm0.04$ & $0.057\pm0.011$ & $0.177\pm0.034$ & $18.89\pm0.042$ & $18.83\pm0.032$\\ 5 095337 & $-4.77\pm0.21$ & $-4.20\pm0.22$ & $-2.72\pm0.11$ & $-2.57\pm0.11$ & $-2.05\pm0.11$ & $-1.64\pm0.12$ & $0.124\pm0.016$ & $0.384\pm0.050$ & $19.17\pm0.097$ & $19.21\pm0.089$\\ 5 095557 & $-4.16\pm0.09$ & $-3.24\pm0.11$ & $-2.42\pm0.04$ & $-2.19\pm0.05$ & $-1.74\pm0.07$ & $-1.06\pm0.07$ & $0.116\pm0.004$ & $0.360\pm0.013$ & $19.19\pm0.052$ & $19.20\pm0.051$\\ 5 100485 & $-3.67\pm0.10$ & $-3.65\pm0.11$ & $-2.31\pm0.05$ & $-2.32\pm0.06$ & $-1.36\pm0.06$ & $-1.32\pm0.06$ & $0.077\pm0.009$ & $0.239\pm0.028$ & $18.84\pm0.052$ & $18.87\pm0.047$\\ 5 100731 & $-4.41\pm0.13$ & $-3.25\pm0.23$ & $-2.50\pm0.05$ & $-2.04\pm0.11$ & $-1.91\pm0.11$ & $-1.21\pm0.14$ & $0.106\pm0.005$ & $0.329\pm0.016$ & $19.28\pm0.090$ & $19.32\pm0.089$\\ 5 106039 & $-4.63\pm0.07$ & $-3.57\pm0.08$ & $-2.66\pm0.03$ & $-1.56\pm0.04$ & $-1.97\pm0.05$ & $-2.01\pm0.05$ & $0.154\pm0.010$ & $0.477\pm0.032$ & $18.95\pm0.050$ & $18.95\pm0.042$\\ 5 111649 & $-3.56\pm0.06$ & $-3.49\pm0.08$ & $-1.59\pm0.02$ & $-1.65\pm0.04$ & $-1.97\pm0.05$ & $-1.84\pm0.05$ & $0.177\pm0.009$ & $0.549\pm0.028$ & $18.86\pm0.046$ & $18.88\pm0.040$\\ 5 123390 & $-5.28\pm0.11$ & $-4.75\pm0.15$ & $-2.78\pm0.05$ & $-2.83\pm0.07$ & $-2.50\pm0.08$ & $-1.92\pm0.10$ & $0.092\pm0.015$ & $0.285\pm0.048$ & $18.75\pm0.078$ & $18.76\pm0.068$\\ 5 180185 & $-3.53\pm0.12$ & $-3.24\pm0.17$ & $-1.80\pm0.05$ & $-1.89\pm0.08$ & $-1.73\pm0.08$ & $-1.35\pm0.10$ & $0.067\pm0.012$ & $0.208\pm0.036$ & $19.45\pm0.073$ & $19.31\pm0.067$\\ 5 180576 & $-4.17\pm0.21$ & $-2.82\pm0.26$ & $-2.54\pm0.10$ & $-2.04\pm0.13$ & $-1.63\pm0.13$ & $-0.79\pm0.15$ & $0.150\pm0.013$ & $0.465\pm0.039$ & $19.14\pm0.106$ & $19.13\pm0.101$\\ 5 185408 & $-3.88\pm0.11$ & $-3.45\pm0.14$ & $-2.47\pm0.05$ & $-2.32\pm0.07$ & $-1.41\pm0.07$ & $-1.13\pm0.09$ & $0.100\pm0.005$ & $0.310\pm0.015$ & $19.12\pm0.057$ & $19.13\pm0.056$\\ 5 196565\tablefootmark{h}&$-4.42\pm0.09$&$-3.17\pm0.13$&$-2.18\pm0.04$&$-1.82\pm0.06$&$-2.25\pm0.07$&$-1.35\pm0.09$ & & & & \\ 5 261267 & $-5.27\pm0.15$ & $-3.65\pm0.15$ & $-2.79\pm0.08$ & $-2.04\pm0.08$ & $-2.48\pm0.08$ & $-1.61\pm0.08$ & $0.085\pm0.009$ & $0.263\pm0.027$ & $19.35\pm0.068$ & $19.29\pm0.064$\\ 5 265970 & $-5.57\pm0.06$ & $-3.70\pm0.11$ & $-2.36\pm0.02$ & $-2.12\pm0.04$ & $-3.21\pm0.05$ & $-1.58\pm0.09$ & $0.078\pm0.005$ & $0.242\pm0.016$ & $19.25\pm0.048$ & $19.28\pm0.046$\\ 5 266015 & $-6.53\pm0.08$ & $-5.18\pm0.08$ & $-3.08\pm0.04$ & $-2.46\pm0.04$ & $-3.45\pm0.05$ & $-2.71\pm0.05$ & $0.179\pm0.005$ & $0.555\pm0.017$ & $19.23\pm0.038$ & $19.25\pm0.036$\\ 5 266131 & $-4.65\pm0.15$ & $-4.03\pm0.16$ & $-2.68\pm0.07$ & $-2.53\pm0.07$ & $-1.97\pm0.10$ & $-1.50\pm0.11$ & $0.136\pm0.012$ & $0.422\pm0.036$ & $19.11\pm0.081$ & $19.12\pm0.075$\\ 5 266513 & $-3.08\pm0.26$ & $-2.58\pm0.28$ & $-2.10\pm0.13$ & $-1.99\pm0.14$ & $-0.98\pm0.15$ & $-0.58\pm0.16$ & $0.159\pm0.012$ & $0.493\pm0.038$ & $19.13\pm0.118$ & $19.11\pm0.114$\\ 5 277080 & $-5.74\pm0.08$ & $-4.28\pm0.09$ & $-2.93\pm0.04$ & $-2.04\pm0.04$ & $-2.81\pm0.05$ & $-2.24\pm0.05$ & $0.225\pm0.013$ & $0.698\pm0.042$ & $18.52\pm0.056$ & $18.71\pm0.046$\\ 5 283079 & $-4.01\pm0.10$ & $-4.00\pm0.11$ & $-2.56\pm0.05$ & $-2.56\pm0.05$ & $-1.45\pm0.07$ & $-1.44\pm0.07$ & $0.161\pm0.005$ & $0.499\pm0.017$ & $19.11\pm0.054$ & $19.07\pm0.052$\\ \hline \end{tabular}}} \tablefoot {Listed parameters: bolometric absolute magnitude, bolometric correction, visual absolute magnitude, color excess, visual extinction and reddening-free distance modulus in the $V$- and $I$-bands. The $I$-band distance modulus is available only for systems for which the $B$ and $V$~magnitudes are available. The ``q''~superscript denotes values at quadrature.\\ \tablefoottext{a}{Computed from $M_{\rm bol} = -5 \log \frac{R}{R_{\odot}} - 10 \log \frac{T_{\rm eff}}{T_{\rm eff,\odot}} + M_{\rm bol,\odot}$;} \tablefoottext{b}{interpolated from Lanz \& Hubeny (\cite{LH03}, \cite{LH07});} \tablefoottext{c}{computed from $M_{V} = M_{\rm bol} - BC_{V}$;} \tablefoottext{d}{computed from $E_{B-V} = (B-V)-(B-V)_{0}$;} \tablefoottext{e}{computed from $A_{V} = \mathcal{R}_{V} E_{B-V}$ with $\mathcal{R}_{V} = 3.1$~$\pm$ $0.3$;} \tablefoottext{f}{computed from $5 \log[d] - 5 = V^{\rm q} - M_V^{\rm q} - A_V^{\rm q}$ where $M_{V}^{\rm q} = -2.5 \log \left( 10^{-0.4 M_{V}^{\rm P}} + 10^{-0.4 M_{V}^{\rm S}} \right)$;} \tablefoottext{g}{computed from $5 \log[d] - 5 = I^{\rm q} - M_V^{\rm q} + (V-I)_0^{\rm q} - 0.600~A_V^{\rm q}$;} \tablefoottext{h}{$B$ and $V$ light curves missing.}} \end{table}