\begin{table}%t3 \caption{\label{basicparam}Basic parameters of the observed eclipsing binaries: identifying number (Fig.~\ref{photodss}), OGLE identifying code, coordinates, orbital period, epoch of primary minimum (see text), infrared and $(B-V)$ and $(V-I)$~color indices.} \par %\centering \par \begin{tabular}{r c c c l l c r c c} \hline\hline \noalign{\smallskip} id & OGLE & $\alpha$ (J2000) & $\delta$ (J2000) & $P_{\rm orb}$ & $t_{0}$ (HJD & $I_{\rm DIA}^{\rm q}$ & $\Delta I^{\rm q}$ & $(B-V)^{\rm q}$ & $(V-I)^{\rm q}$ \\ &object & (h m s) & ($\degr$ $\arcmin$ $\arcsec$) & (d) & $-$2~450~000) &(mag) &(mag) & (mag) & (mag)\\ \hline 1 & 4 110409 & 00:47:00.19 & $-73:18:43.1$ & 2.973170(4)&619.49136& 15.840 & $-0.002$ & $-0.036\pm0.007$ &$ 0.006\pm0.004$ \\ 2 & 4 113853 & 00:47:03.76 & $-73:15:19.8$ & 1.320757(4)&620.90811& 17.340 & $-0.008$ & $-0.002\pm0.006$ &$ 0.045\pm0.003$ \\ 3 & 4 117831 & 00:47:31.74 & $-73:12:02.2$ & 1.164566(2)&621.36981& 17.799 & $ 0.003$ & $-0.115\pm0.004$ &$-0.102\pm0.003$ \\ 4 & 4 121084 & 00:47:32.05 & $-73:09:08.4$ & 0.823722(1)&624.39596& 16.959 & $-0.000$ & $-0.084\pm0.004$ &$-0.052\pm0.004$ \\ 5 & 4 121110 & 00:47:04.60 & $-73:08:40.1$ & 1.111991(1)&622.29034& 17.003 & $ 0.009$ & $-0.090\pm0.005$ &$-0.076\pm0.002$ \\ 6 & 4 121461 & 00:47:24.69 & $-73:09:35.5$ & 1.94670 &624.3954 & 17.926 & $ 0.003$ & $-0.060\pm0.005$ &$-0.081\pm0.005$ \\ 7 & 4 159928 & 00:48:13.53 & $-73:19:30.8$ & 1.150460(2)&621.13880& 16.704 & $-0.000$ & $-0.079\pm0.002$ &$-0.059\pm0.002$ \\ 8 & 4 160094 & 00:48:10.17 & $-73:19:37.1$ & 1.699634(66)&620.04883&17.125 & $-0.000$ & $-0.163\pm0.002$ &$-0.176\pm0.002$ \\ 9 & 4 163552 & 00:47:53.24 & $-73:15:56.5$ & 1.545811(2)&620.73188& 15.771 & $ 0.008$ & $-0.045\pm0.003$ &$-0.030\pm0.002$ \\ 10 & 4 175149 & 00:48:34.80 & $-73:06:52.6$ & 2.000375(3)&623.85898& 14.970 & $-0.003$ & $-0.218\pm0.007$ &$-0.238\pm0.004$ \\ 11 & 4 175333 & 00:48:15.38 & $-73:07:05.3$ & 1.251126(9)&622.86576& 17.732 & $-0.009$ & $-0.121\pm0.003$ &$-0.122\pm0.003$ \\ 12 & 5 016658 & 00:49:02.93 & $-73:20:55.9$ & 1.246158(2)&466.70225& 17.446 & $-0.005$ & $-0.123\pm0.004$ &$-0.133\pm0.002$ \\ 13 & 5 026631 & 00:48:59.84 & $-73:13:28.8$ & 1.411680(1)&465.98392& 16.242 & $-0.001$ & $-0.137\pm0.003$ &$-0.168\pm0.001$ \\ 14 & 5 032412 & 00:48:56.86 & $-73:11:39.7$ & 3.607857(1)&464.67202& 16.318 & $ 0.005$ & $-0.033\pm0.006$ &$-0.023\pm0.002$ \\ 15 & 5 038089 & 00:49:01.85 & $-73:06:06.9$ & 2.389426(2)&468.55092& 15.256 & $-0.002$ &($-0.216\pm0.011$) &($-0.162\pm0.007$) \\ 16 & 5 095337 & 00:49:15.34 & $-73:22:05.8$ & 0.904590(1)&466.18186& 17.090 & $ 0.004$ & $-0.118\pm0.052$ &$-0.154\pm0.030$ \\ 17 & 5 095557 & 00:49:18.07 & $-73:21:55.3$ & 2.421185(21)&466.80139&17.440 & $-0.012$ & $-0.100\pm0.003$ &$-0.098\pm0.003$ \\ 18 & 5 100485 & 00:49:19.86 & $-73:17:55.6$ & 1.519124(1)&467.15922& 17.150 & $-0.008$ & $-0.138\pm0.008$ &$-0.162\pm0.003$ \\ 19 & 5 100731 & 00:49:29.33 & $-73:17:57.9$ & 1.133344(3)&467.82186& 17.378 & $ 0.000$ & $-0.111\pm0.003$ &$-0.140\pm0.002$ \\ 20 & 5 106039 & 00:49:20.00 & $-73:13:37.3$ & 2.194069(5)&465.38253& 16.695 & $-0.005$ & $-0.050\pm0.033$ &$-0.016\pm0.019$ \\ 21 & 5 111649 & 00:49:17.19 & $-73:10:24.5$ & 2.959578(3)&470.15054& 16.726 & $ 0.007$ & $ 0.008\pm0.009$ &$ 0.032\pm0.003$ \\ 22 & 5 123390 & 00:49:22.66 & $-73:03:42.8$ & 2.172917(41)&464.12108&16.203 & $-0.001$ & $-0.162\pm0.015$ &$-0.171\pm0.008$ \\ 23 & 5 180185 & 00:50:02.63 & $-73:17:34.4$ & 5.491165(95)&469.37759&17.321 & $ 0.034$ &($-0.115\pm0.011$) &($ 0.029\pm0.009$) \\ 24 & 5 180576 & 00:50:13.44 & $-73:16:33.1$ & 1.561124(2)&466.91033& 17.607 & $ 0.006$ & $-0.071\pm0.009$ &$-0.036\pm0.003$ \\ 25 & 5 185408 & 00:50:24.52 & $-73:14:56.0$ & 1.454991(2)&466.28931& 17.524 & $-0.006$ & $-0.122\pm0.003$ &$-0.126\pm0.002$ \\ 26 & 5 196565 & 00:50:30.17 & $-73:07:38.2$ & 3.942732(12)&468.26098&16.942 & $ 0.003$ & (no data) & (no data) \\ 27 & 5 261267 & 00:51:35.04 & $-73:17:11.5$ & 1.276632(2)&464.97658& 16.833 & $-0.005$ &($-0.129\pm0.006$) &($-0.099\pm0.004$) \\ 28&5 265970&00:51:28.13&$-73:15:17.6$&3.495685(54)&$465.39125$\tablefootmark{a}&16.226&$0.005$&$-0.136\pm0.005$ &$-0.164\pm0.002$ \\ 29 & 5 266015 & 00:51:16.82 & $-73:13:01.9$ & 1.808925(2)&465.10449& 15.964 & $ 0.002$ & $-0.086\pm0.004$ &$-0.072\pm0.003$ \\ 30 & 5 266131 & 00:51:35.81 & $-73:12:44.8$ & 1.302945(22)&465.50898&17.119 & $ 0.001$ & $-0.103\pm0.016$ &$-0.104\pm0.004$ \\ 31 & 5 266513 & 00:50:57.49 & $-73:12:30.3$ & 1.107510(2)&467.15823& 18.066 & $ 0.005$ & $-0.035\pm0.005$ &$ 0.009\pm0.003$ \\ 32 & 5 277080 & 00:51:11.68 & $-73:05:20.3$ & 1.939346(4)&465.96082& 16.070 & $ 0.002$ &($-0.019\pm0.013$) &($-0.171\pm0.003$) \\ 33 & 5 283079 & 00:50:58.67 & $-73:04:35.8$ & 1.283583(1)&466.92376& 17.422 & $-0.002$ & $-0.073\pm0.004$ &$-0.013\pm0.002$ \\ \hline \end{tabular} \tablefoot {The difference $\Delta I^{\rm q}=I({\rm DIA})-I({\rm DoPhot})$ is also indicated. The ``q''~superscript denotes values at a quadrature (the brightest for the asymmetric light curves). $\alpha$, $\delta$ are from Wyrzykowski et~al. (\cite{WUK04}), while $P_{\rm orb}$ and $t_{0}$ are updated values based on both photometry and radial velocities (see text). The uncertainty of the period is given between parentheses as the value of the last digit or, in a few cases, of the last two digits. $I^{\rm q}$, $V^{\rm q}$, $(B-V)^{\rm q}$ and $(V-I)^{\rm q}$ were determined from the light-curve solutions. The color indices between parentheses are unreliable: they correspond to the outliers in Fig.~\ref{colour_colour.2}.\\ \tablefoottext{a}{Incomplete observations for one of the eclipses.}} \vspace*{3mm} \end{table}