\begin{table}%t5 %\centering \par \caption {\label{TabCoverStats}Sky coverage (15~months survey, average per frequency).} \begin{tabular}{lccccc} \hline\hline \noalign{\smallskip} Frequency & Mean\tablefootmark{a} & Low\tablefootmark{b} & High\tablefootmark{c}& Deep\tablefootmark{d} & Pol. Stat.\tablefootmark{e} \\ (GHz) &(s/sq. deg.) & (\%) & (\%) & (\%) & (\%) \\ \hline 30 & 953 & 4.5 & 1.7 & 0.42 & 0.8 \\ 44 & 953 & 3.3 & 1.5 & 0.28 & 3.7 \\ 100 & 953 & 4.3 & 1.5 & 0.41 & 0.61 \\ 353 & 953 & 4.3 & 1.2 & 0.37 & 0.10 \\ \hline \end{tabular} \tablefoot{\tablefoottext{a}{Integration time per square degree for typical channels.}\tablefoottext{b}{Fraction of the sky with integration time lower than one-half the mean value.}\tablefoottext{c}{Fraction of the sky with integration time higher than four times the mean value.}\tablefoottext{d}{Fraction of the sky with integration time higher than nine times the mean value.}\tablefoottext{e}{Fraction of the sky which has a high spread of scanning angles, for all detectors at each frequency. The value is based on dividing the 2$\pi$ range of angles into 16~bins; for a pixel on the sky, the spread is considered high if there are samples in at least 5~bins. More details are available in Dupac \& Tauber (\cite{Dupac05}).}} \vspace*{-2mm}\end{table}