\begin{table}%T10 \caption{\label{table:nearest}Statistics of the number distributions of the projected separation distance between nearest neighbours in IRDCs.} \small %\centering \begin{tabular}{c c c c c c c c} \hline\hline \noalign{\smallskip} & \multicolumn{2}{c}{\textbf{Observed distribution}} & \multicolumn{2}{c}{\textbf{Random distribution}}\\ Name MSXDC & $\langle r \rangle_{\rm obs}$ & $\tilde{r}_{\rm obs}$ & $\langle r \rangle_{\rm ran}$ & $\tilde{r}_{\rm ran}$ & $\langle r \rangle_{\rm obs}/\langle r \rangle_{\rm ran}$ & $\tilde{r}_{\rm obs}/\tilde{r}_{\rm ran}$ & Prob.\\ & [$\log$ AU] & [$\log$ AU] & [$\log$ AU] & [$\log$ AU]& & & \\ \hline G304.74+01.32 & $5.083\pm0.058$ & 5.136 & $5.030\pm0.111$ & $5.047\pm0.110$ & $1.13\pm0.33$ & $1.23\pm0.31$ & 0.901\\ G048.65-00.29 & $4.786\pm0.046$ & 4.741 & $4.854\pm0.108$ & $4.875\pm0.108$ & $0.85\pm0.23$ & $0.73\pm0.18$ & 0.860\\ G035.39-00.33 & $5.123\pm0.093$ & 4.999 & $5.145\pm0.125$ & $5.137\pm0.161$ & $0.95\pm0.34$ & $0.73\pm0.27$ & 0.823\\ G034.43+00.24 & $5.117\pm0.036$ & 5.081 & $5.104\pm0.128$ & $5.123\pm0.143$ & $1.03\pm0.31$ & $0.91\pm0.30$ & 0.966\\ G033.69-00.01 & $5.539\pm0.019$ & 5.528 & $5.512\pm0.100$ & $5.523\pm0.119$ & $1.06\pm0.25$ & $1.01\pm0.28$ & 0.594\\ G031.97+00.07 & $5.447\pm0.066$ & 5.354 & $5.450\pm0.128$ & $5.469\pm0.148$ & $0.99\pm0.33$ & $0.77\pm0.26$ & 0.366\\ G028.53-00.25 & $5.281\pm0.077$ & 5.356 & $5.334\pm0.118$ & $5.360\pm0.123$ & $0.88\pm0.29$ & $0.99\pm0.28$ & 0.843\\ G028.37+00.07 & $5.520\pm0.073$ & 5.597 & $5.490\pm0.096$ & $5.501\pm0.113$ & $1.07\pm0.30$ & $1.25\pm0.32$ & 1.000\\ G024.33+00.11 & $5.236\pm0.040$ & 5.230 & $5.308\pm0.117$ & $5.314\pm0.148$ & $0.85\pm0.24$ & $0.82\pm0.28$ & 0.792\\ G023.60+00.00 & $5.280\pm0.057$ & 5.341 & $5.142\pm0.148$ & $5.153\pm0.172$ & $1.37\pm0.50$ & $1.54\pm0.61$ & 0.780\\ \hline \end{tabular} \vspace*{3mm} \end{table}