\begin{table}%t3 \caption{\label{tab:efficiencies}Derived energy input and decay rates and corresponding minimum efficiencies.} %\centerline { %\begin{tabular}{rcccccccccccr} \begin{tabular}{r@{~~}c@{~~~}c@{~~}c@{~~}c@{~~}c@{~~}c@{~~}c@{~~~~~}c@{~~~}c@{~~~}c@{~~}c} \hline\hline\\[-0.3cm] % & $\dot{E}_{\rm in}$ & $\dot{E}_{\rm decay}^{\rm HD}$ & $\epsilon^{\rm HD}$ & $\dot{E}_{\rm decay}^{\rm pot}$ & $\epsilon^{\rm pot}$ & $\dot{E}_{\rm decay}^{\rm R_{25}}$ & $\epsilon^{\rm R_{25}}$ & $E_{\rm kin}$ & $f_{>R_{25}}^{E_{\rm kin}}$ & $f_{>R_{25}}^{\dot{E}_{\rm decay}^{\rm HD}}$ & $\epsilon_{>R_{25}}$\\ & $\dot{E}_{\rm in}$ & $|\dot{E}_{\rm decay,HD}|$ & $\epsilon_{\rm HD}$ & $|\dot{E}_{\rm decay,pot}|$ & $\epsilon_{\rm pot}$ & $|\dot{E}_{\rm decay,R_{25}}|$ & $\epsilon_{\rm R_{25}}$ & $E_{\rm kin}$ & $f_{>R_{25}}^{E_{\rm kin}}$ & $f_{>R_{25}}^{\dot{E}_{\rm decay,HD}}$ & $\epsilon_{>R_{25}}$ \\ & $10^{39}~$erg$~$s$^{-1}$ & $10^{39}~$erg$~$s$^{-1}$ & & $10^{39}~$erg$~$s$^{-1}$ & & $10^{39}~$erg$~$s$^{-1}$ & & $10^{54}~$erg & & & \\ Name &{\em (1)} & {\em (2)} & {\em (3)} & {\em (4)} & {\em (5)} & {\em (6)} & {\em (7)} & {\em (8)} & {\em (9)} & {\em (10)} & {\em (11)}~ \\ \hline NGC 5194 & 92.39 & 3.41 & 0.037 & 7.08 & 0.077 & 0.45 & 0.005 & 28.20 & 0.26 & 0.17 & 0.006 \\ NGC 628 & 18.48 & 1.97 & 0.106 & 2.06 & 0.111 & 0.06 & 0.003 & 8.39 & 0.38 & 0.28 & 0.027 \\ NGC 3184 & 19.90 & 0.82 & 0.041 & 0.96 & 0.048 & 0.04 & 0.002 & 11.03 & 0.21 & 0.13 & 0.005 \\ NGC 3351 & ~8.96 & 0.16 & 0.018 & 1.08 & 0.121 & 0.06 & 0.006 & ~7.12 & 0.15 & 0.17 & 0.003 \\ NGC 6946 & 60.07 & 4.44 & 0.074 & 5.63 & 0.094 & 0.28 & 0.005 & 17.01 & 0.32 & 0.29 & 0.020 \\ NGC 5055 & 30.54 & 1.56 & 0.051 & 3.59 & 0.117 & 0.15 & 0.005 & 58.98 & 0.31 & 0.15 & 0.008 \\ NGC 4736 & ~3.47 & 0.52 & 0.151 & 6.42 & 1.848 & 0.29 & 0.083 & ~3.52 & 0.17 & 0.12 & 0.018 \\ NGC 7793 & ~2.72 & 1.87 & 0.686 & 1.95 & 0.716 & 0.13 & 0.050 & ~3.57 & 0.17 & 0.07 & 0.047 \\ IC 2574 & ~0.24 & 2.18 & 9.009 & 0.60 & 2.459 & 0.10 & 0.417 & ~4.52 & 0.28 & 0.18 & 1.600 \\ NGC 4214 & ~0.06 & 1.28 & $\!\!$22.457 & 1.17 & $\!\!$20.549 & 0.21 & 3.653 & ~1.33 & 0.49 & 0.42 & 7.831 \\ HO II & ~0.04 & 1.77 & $\!\!$50.070 & 0.67 & $\!\!$19.065 & 0.17 & 4.900 & ~1.81 & 0.59 & 0.50 & $\!\!\!$18.554 \\ \hline \end{tabular}} \tablefoot{{\em (1)} Total kinetic energy provided by infalling gas, calculated from Eq.~(\ref{eqn:dissip1}) using $\dot{M} = \dot{M}_{\rm SF}$ and $v_{\rm in} = v_{\rm rot}$. {\em (2)} Total dissipation rate of turbulent kinetic energy $|\dot{E}_{\rm decay,HD}|$ obtained from integrating Eq.~(\ref{eqn:dissip}) over the entire galaxy using $L_{\rm d}$ derived from vertical hydrostatic equilibrium. {\em (3)}~Minimum efficiency $\epsilon_{\rm HD} = |\dot{E}_{\rm decay,HD}|/\dot{E}_{\rm in}$ required for the conversion of infall motion into turbulent energy in the disk. {\em (4)} Integrated turbulent decay rate $|\dot{E}_{\rm decay,pot}|$ based on the potential method. {\em (5)} Corresponding minimum efficiency $\epsilon_{\rm pot}$. {\em (6)} Integrated turbulent decay rate $|\dot{E}_{\rm decay,R_{25}}|$ based on the assumption that the outer scale of the turbulent velocity field is equal to the size of the disk $L_{\rm d} \sim2~R_{25}$. {\em (7)} The corresponding required minimum efficiency $\epsilon_{\rm R_{25}}$ for accretion driven turbulence to work. {\em (8)} Total kinetic energy $E_{\rm kin}$ integrated over the whole galaxy. {\em (9)}~Fraction of total kinetic energy outside the optical radius $R_{25}$. {\em (10)} Fraction of turbulent energy decay rate outside of $R_{25}$ using the disk vertical scale height from hydrostatic balance. The total rate is given in Col.~(2). {\em (11)} Corresponding required accretion efficiency to drive the turbulence in the outer disk for $R > R_{25}$. Compare to the total galactic value given in Col.~(3). The outer disk value is typically a factor of 5~lower.}\vspace*{2mm} \end{table}