\begin{table}%t1 %\centering \par \caption{\label{tab:standardsummary}Parameter values of our standard scenario.} \begin{tabular}[h]{l@{\hspace{-1mm}}r l p{4.3cm}} \hline\hline\noalign{\smallskip} & Parameter & Standard value & Comment\\ \hline &$D_{\rm S}$ & $8$~kpc & distance to Galactic bulge \\ &$D_{\rm L}$ & $6$~kpc & \\ &$M_{\rm Star}$ & $0.3~M\ensuremath{_{\sun}}$ & most abundant type of star \\ &$\mu_\perp$ & $7~{\rm mas/year}$ & ${=}v_\perp=200$~km~s$^{-1}$ at $D_{\rm L}=6$~kpc \\ *&$q_{\rm PS}$ & $10^{-3}$ & Jupiter/Sun mass ratio\\ *&$\theta_{\rm PS}$ & $1.3~\ensuremath{\theta_{E}}$ & wide separation caustic \\ *&$q_{\rm MP}$ & $10^{-2}$ & Moon/Earth mass ratio \\ *&$\theta_{\rm MP}$ & $1.0~\ensuremath{\theta_{E}}^P$ & planetary Einstein radius\\ *&$R_{\rm Source}$ & $R_{\sun}$ & brightness requirements vs. stellar abundance \\ *&$f_{\rm sampled}$ & $\simeq\frac{1 ~{\rm frame}}{15~{\rm min}}$ & high-cadence observation \\ *&$\sigma$ & 20~mmag & typical value in past observations \\ \hline \end{tabular} \tablefoot{Parameters marked with an asterisk~(*) are varied in our simulations in order to evaluate their influence on the lunar detection rate and to compare different triple-lens scenarios. The fixed parameters lead to values for the Einstein ring radius, $\ensuremath{\theta_{E}} =0.32$~mas, i.e.~1.9~AU in the lens plane, and the Einstein time, $t_E \simeq 17$~days. The lensed system is a Saturn-mass planet at a projected separation of 2.5~AU from its $0.3~M_{\sun}$ M-dwarf host, the Earth-mass satellite orbits the planet at 0.06~AU, i.e.~$0.01$~mas angular separation, cf. Fig.~\ref{fig:lensingzones}.} \vspace*{-2mm} \end{table}