\begin{table}%t4 \par \caption{\label{c2dfits}MLE fits to the distribution of projected radii of the three cartesian stacked cones.} \small%\centering \par \begin{tabular}{llcclcclcccl} \hline\hline\noalign{\smallskip} Model & $R_{\rm max}$ & Vel. cut & \multicolumn{2}{c}{No bg} & & \multicolumn{2}{c}{Fixed bg} & & \multicolumn{3}{c}{Free bg} \\ \cline{4-5} \cline{7-8} \cline{10-12} \noalign{\smallskip} & & & $c_{\rm 2D}$ & $P_{\rm KS}$ & & $c_{\rm 2D}$ & $P_{\rm KS}$ & & $100~\hat\Sigma_{\rm bg}$ \ ($\sigma(\log\hat\Sigma_{\rm bg})$) & $c_{\rm 2D}$ & $P_{\rm KS}$ \\ (1) & (2) & (3) & (4) & (5) & & (6) & (7) & & (8) & (9) & (10)\\ \hline\\[-3.25mm] NFW &1&N&3.46~$\pm$~0.04~$\pm$~0.21& $<$$10^{-5}$&&4.06~$\pm$~0.05~$\pm$~0.26& 0.18&&2.4 \ (0.20)&3.95~$\pm$~0.05~$\pm$~0.03& 0.08\\ NFW &1&Y&3.84~$\pm$~0.05~$\pm$~0.19& 0.059&&4.10~$\pm$~0.05~$\pm$~0.21& 0.19&&1.0 \ (0.07)&4.06~$\pm$~0.11~$\pm$~0.17& 0.2\\ Einasto&1&N&3.30~$\pm$~0.04~$\pm$~0.21& 0.00053&&3.90~$\pm$~0.05~$\pm$~0.25& 0.46&&2.6 \ (0.18)&3.83~$\pm$~0.05~$\pm$~0.08& 0.27\\ Einasto&1&Y&3.70~$\pm$~0.04~$\pm$~0.18& 0.32&&3.96~$\pm$~0.05~$\pm$~0.20& 0.42&&0.8 \ (0.01)&3.87~$\pm$~0.12~$\pm$~0.19& 0.65\\ NFW &1.35&N&3.21~$\pm$~0.03~$\pm$~0.24& $<$$10^{-14}$&&4.07~$\pm$~0.05~$\pm$~0.31& 0.11&&2.9 \ (0.08)&4.06~$\pm$~0.07~$\pm$~0.15& 0.25\\ NFW &1.35&Y&3.78~$\pm$~0.04~$\pm$~0.23& 0.052&&4.19~$\pm$~0.05~$\pm$~0.26& 0.06&&0.5 \ (0.29)&3.96~$\pm$~0.07~$\pm$~0.16& 0.22\\ Einasto&1.35&N&3.00~$\pm$~0.03~$\pm$~0.22& $<$$10^{-13}$&&3.83~$\pm$~0.04~$\pm$~0.28& 0.32&&3.3 \ (0.08)&3.95~$\pm$~0.06~$\pm$~0.16& 0.52\\ Einasto&1.35&Y&3.59~$\pm$~0.04~$\pm$~0.20& 0.04&&3.98~$\pm$~0.04~$\pm$~0.22& 0.46&&0.9 \ (0.10)&3.89~$\pm$~0.08~$\pm$~0.17& 0.73\\ NFW &3&N&1.67~$\pm$~0.01~$\pm$~0.16& 0&&3.82~$\pm$~0.04~$\pm$~0.37& 0&&3.8 \ (0.03)&4.42~$\pm$~0.04~$\pm$~0.45& $<$$10^{-6}$\\ NFW &3&Y&3.06~$\pm$~0.02~$\pm$~0.12& 0&&4.31~$\pm$~0.04~$\pm$~0.17& $<$$10^{-9}$&&1.2 \ (0.12)&4.34~$\pm$~0.05~$\pm$~0.38& 0.00003\\ Einasto&3&N&1.42~$\pm$~0.01~$\pm$~0.12& 0&&3.19~$\pm$~0.03~$\pm$~0.34& 0&&4.3 \ (0.05)&4.15~$\pm$~0.03~$\pm$~0.67& 0.00003\\ Einasto&3&Y&2.65~$\pm$~0.02~$\pm$~0.10& 0&&3.75~$\pm$~0.03~$\pm$~0.12& $<$$10^{-13}$&&1.5 \ (0.03)&4.02~$\pm$~0.01~$\pm$~0.12& 0.00055\\ \hline \end{tabular} \tablefoot{Column~1: model (NFW or $m=5$ Einasto); Col.~2 ($R_{\rm max}$): projected radius of the cone in which the stacked cluster is built, in units of $r_{200}$; Col.~3 ($v$-cut): presence (Y) or absence of the velocity cut with $\kappa=2.7$ (NFW) or 2.6 (Einasto); Cols.~4$-$5, 6$-$7, 9$-$10: mean best-fit concentration ($c=r_{200}/r_{-2}$) from projected radii and probability that distribution of projected radii is consistent with model using a Kolmogorov-Smirnov test ($P_{\rm KS}$), for fits without a background (Cols.~4 and~5), with a fixed background ($\hat\Sigma_{\rm bg} = 0.0286$ (no velocity cut) or 0.0126 (with velocity cut), Cols.~6 and~7) or a free background (Cols.~9 and~10), with best-fit value (100 times the geometric mean and error on its logarithm in parentheses) given in Col.~8. The minimum projected radius is set to $0.03~r_{200}$. For the Einasto model, we adopt the approximation to the surface density and projected number (mass) profiles given in Appendix~\ref{appsdensEinasto}. The errors on $c$ are statistical (first) and a measure of the cosmic variance term estimated by the gapper (\citealp{WT76}, see \citealp{BFG90}) standard deviation of the MLE values for the three projection axes.} \end{table}