\begin{table}%T5 \caption{\label{cbiastab}Concentration bias of 2D fits.} \small%\centering \par \begin{tabular}{llccccccc} \hline\hline\noalign{\smallskip} Model & \multicolumn{1}{c}{$R_{\rm max}$} & \multicolumn{7}{c}{$c_{\rm 2D}/c_{\rm 3D}^{\rm best}$} \\ \noalign{\smallskip}%\cline{3-9} & & \multicolumn{3}{c}{no $v$-cut} & & \multicolumn{3}{c}{$v$-cut} \\ \cline{3-5} \cline{7-9} & & no bg & fixed bg & free bg & & no bg & fixed bg & free bg \\ \hline NFW & 1 & 0.86~$\pm$~0.07 &{\bf 1.01~$\pm$~0.08} & {\bf0.99~$\pm$~0.05} & & {\bf0.96~$\pm$~0.06} & {\bf1.02~$\pm$~0.07} & {\bf1.01~$\pm$~0.07}\\ Einasto $m=5$ & 1 & {0.82~$\pm$~0.06} & {\bf0.97~$\pm$~0.08} & {\bf0.96~$\pm$~0.05} & & {\bf0.93~$\pm$~0.06} & {\bf0.99~$\pm$~0.07} & {\bf0.97~$\pm$~0.07}\\ NFW & 1.35 & 0.78~$\pm$~0.06 & {\bf0.98~$\pm$~0.08} & {\bf0.98~$\pm$~0.05} & & {\bf0.91~$\pm$~0.06} & {\bf1.01~$\pm$~0.07} & {\bf0.96~$\pm$~0.05}\\ Einasto $m=5$ & 1.35 & 0.72~$\pm$~0.06 & {\bf0.93~$\pm$~0.07} & {\bf0.95~$\pm$~0.05} & & {0.87~$\pm$~0.06} & {\bf0.96~$\pm$~0.06} & {\bf0.94~$\pm$~0.05}\\ NFW & 3 & 0.37~$\pm$~0.04 & 0.85~$\pm$~0.09 & 0.98~$\pm$~0.11 & & 0.68~$\pm$~0.04 & 0.96~$\pm$~0.06 & 0.96~$\pm$~0.10\\ Einasto $m=5$ & 3 & 0.32~$\pm$~0.03 & 0.71~$\pm$~0.08 & {0.92~$\pm$~0.16} & & 0.59~$\pm$~0.04 & 0.83~$\pm$~0.05 & {0.89~$\pm$~0.05}\\ \hline \end{tabular} \tablefoot{The biases highlighted in bold (respectively blue italics) show the cases where the best-fit surface density profile was consistent with the data to better than 5\% (between 0.01\% and 5\%) confidence (see last column of Table~\ref{c2dfits}). The errors are the statistical (MLE fit) and cosmic variance (from the 3~cartesian stacked halos) errors of Table~\ref{c2dfits} added in quadrature together and with the analogous errors on the best-fit (bold in Table~\ref{c3d}) 3D concentration, with $\sigma^2(c_{\rm 2D}/c_{\rm 3D}^{\rm best})=\sigma^2(c_{\rm 2D})/\left\langle c_{\rm 3D}^{\rm best}\right\rangle^2 + \sigma^2(c_{\rm 3D}^{\rm best}) \left \langle c_{\rm 2D}\right\rangle^2/\left\langle c_{\rm 3D}^{\rm best}\right \rangle^4$.} \end{table}