\begin{table}%t2 \caption{\label{ttabaver}Cycle averages of several RR Lyr star parameters.} \small%\centering \par \begin{tabular}{llccc} \hline \hline\noalign{\smallskip} Star & $\langle L \rangle$ & $\langle T_{\rm eff}\rangle$ & $\log \langle g(T,L,M) \rangle$ & $\log \langle g_{\rm BJ} \rangle$ \\ \hline \object{RR Gem} & 43.5 & 6647 & 2.84 & 3.33 \\ \object{TW Lyn} & 31.6 & 6196 & 2.85 & 3.61 \\ \object{AS Cnc} & 49.3 & 6592 & 2.77 & 3.46 \\ \object{SY Ari} & 50.0 & 6059 & 2.61 & 2.93 \\ \object{SZ Gem} & 52.9 & 6739 & 2.78 & 3.38 \\ \object{BH Aur} & 46.4 & 5997 & 2.63 & 3.04 \\ \object{TZ Aur} & 50.3 & 5934 & 2.58 & 2.86 \\ \noalign{\smallskip} \object{AR Per}\tablefootmark{a} & 56.3 & 6030 & 2.55 & 3.66 \\ \object{CI And}\tablefootmark{b} & 47.7 & 6270 & 2.69 & 3.19 \\ \object{BR Tau}\tablefootmark{c} & 44. & 5980 & 2.65 & 2.92 \\ \object{AA Cmi}\tablefootmark{c} & 45. & 6340 & 2.73 & 3.28 \\ \hline \end{tabular} \tablefoot{$L$ in $L_{\odot}$; $T$ in K; $g$ in cm~s$^{-2}$. \ $L$ derived from $y$, $A_V$, $d$, and B.C.\\ \tablefoottext{a}{Light curve sparsely measured (see Fig.~\ref{flightcurves}).} \tablefoottext{b}{Light curve with a large gap in the descending branch; interpolated.} \tablefoottext{c}{Relatively large observing gaps (see Fig.~\ref{flightcurves}); interpolation uncertain.} } \end{table}