\begin{table}%t1 %\centering \par \caption{\label{tab.inim}Initial models~M \& SC.} \begin{tabular}{llllllllllllll} \hline \hline\noalign{\smallskip} Model & $M$ & Pop. & $Z$ & $M_{\rm He}$ & $R_{\rm He}$ & $E_{\rm B}$/$k_{\rm B}T$ & $\Gamma_{\rm cnv}$ & $\Psi_{\rm cnv}$ & $L_{\rm He}$ & $L_{\rm H}$ & $T_{\max}$ & $r_{\max}$ & $\rho_{\max}$ \\ & $[\Msun]$ & & & $[\Msun]$ & $[10^9\cm]$ & & && $[10^9~\Lsun]$ & $[10^9~\Lsun]$ & $[10^8\K]$ & $[10^8\cm]$ & $[10^5\gcm]$ \\ \hline M & $1.25$ & I & $0.02$ & $0.47$ & $1.91$ & $<$0.006 & 0.3 & 5 & $1.03$ & $10^{-6}$ & $1.70$ & $4.71$ & $3.44$ \\ \hline SC & 0.85 & III & $0.00 $ & $0.5$ & $5.45$ & $<$0.016 & 0.1 & --2 & $0.004$ & 0.07 & $2.04$ & $11.$ & $0.08$ \\ \hline \end{tabular} \tablefoot{Total mass $M$, stellar population, metal content~$Z$, mass $M_{\rm He}$ and radius $R_{\rm He}$ of the helium core, ratio of the binding energy of the electrons $E_{\rm B}$ in the helium core and of their thermal energy $k_{\rm B} T$, ratio of the Coulomb and thermal energy of the ions $\Gamma_{\rm cnv}$, electron degeneracy parameter in the convection zone $\Psi_{\rm cnv}$, nuclear energy production rate due to helium $L_{\rm He}$ and hydrogen $L_{\rm He}$ burning, temperature maximum $T_{\max}$, and radius $r_{\max}$ and density $\rho_{\max}$ at the temperature maximum.} \end{table}