\begin{table}%t2 \par \begin{threeparttable} \caption {\label{Talpha3D}Kinematic results for $\tilde\alpha$ and $\tilde\eta_{\rm t}$ for purely hydrodynamic ($\tilde{N}_{\rm M}=0$), purely magnetic ($\tilde{N}_{\rm K}=0$), and hydromagnetic Roberts forcing.} \vspace{12pt} \begin{tabular}{@{\hspace{4pt}}c@{\hspace{6pt}}c@{\hspace{8pt}}c@{\hspace{8pt}}c@{\hspace{8pt}}c@{\hspace{8pt}}c@{\hspace{8pt}}l@{\hspace{4pt}}} \hline\hline \noalign{\smallskip} $\tilde{N}_{\rm K}$ & $\tilde{N}_{\rm M}$ & $\tilde\alpha(k_z=0)$ & $\tilde\alpha$ & $\tilde\alpha^\QK$ & $\tilde\eta_{\rm t}$ & $\tilde\eta_{\rm t}^\QK$ \\[1mm] \hline\\[-2mm] %NK NM alpha(z=0) alpha alphaQK etat etatQK 1 & 0 & $-0.0857$ &$-0.0569$ & $-0.0569$ & $0.0399$ &$0.0399$ \\ 0 & 1 & $\ivm0.2499$ &$\ivm0.1684$ & $\ivm0.0000$ & $0.1188$ &$0.0000$ \\[3pt] % 3.364 & 0 & $-0.7330$ &$-0.4734$ & $-0.4734$ & $0.3087$ &$0.3087$ \\ %0 & 2 & $+0.8632$ &$+0.5958$ & $\phantom{-}0.0000$ & $0.4188$ &$0.0000$ \\ %3.364 & 2 & $+0.0300$ &$+0.0952$ & $-0.4734$ & $0.6784$ &$0.3087$ \\[4pt] % 0 & 1.942 & $\ivm0.8219 $ &$\ivm0.5664$ & $\ivm0.0000$ & $0.3983$ &$0.0000$ \\ 3.364 & 1.942 & $-0.0081$ &$\ivm0.0664$ & $-0.4734$ & $0.6604$ &$0.3086$ \\[4pt] % -0.00805 3.364 & 0 & $-1.0002$ &$-0.6668$ & $-0.6666$ & $0.4715$ &$0.4714$\tablefootmark{1}\\ %0 & 2 & $+1.0607$ &$+0.7071$ & $\phantom{-}0.0000$ & $0.5000$ &$0.0000$ \tnote{1}\\ %3.364 & 2 & $+0.0604$ &$+0.0403$ & $\phantom{-}0.0000$ & $0.9715$ &$0.0000$ \tnote{1}\\[4pt] % 0 & 1.942 & $\ivm1.0000$ & $\ivm0.6666$ & $\ivm0.0000$ & $0.4714$ &$0.0000$\tablefootmark{1}\\ 3.364 & 1.942 & $-4\times 10^{-6}$& $\ivm2\times 10^{-5}$ & $-0.6666$ & $0.9428$ &$0.4714$\tablefootmark{1} \\[1mm] \hline \end{tabular} \end{threeparttable} \tablefoot{\tablefoottext{1}{With SOCA.} Test-field wavenumber $k_z=1$, except in the third column where $k_z=0$. These results agree with those of the imposed-field method. $\tilde\alpha^\QK$ and $\tilde\eta_{\rm t}^\QK$ refer to the quasi-kinematic method. } \end{table}