\begin{table}%t1 \caption{\label{res}Rotational and hyperfine parameters of trans-HCOOH.} \par %\centering $$ \begin{tabular}{lccr@{.}lcr@{.}lcr@{.}lccr@{.}lccr@{.}l} \hline\hline \noalign{\smallskip} Constant &&& \multicolumn{8}{c}{This work} &&& \multicolumn{2}{c}{Chardon et~al.}&&& \multicolumn{2}{c}{Winnewisser et~al.} \\ \cline{3-11} \\[-3mm] &&& \multicolumn{2}{c}{Experiment\tablefootmark{a}}&&\multicolumn{2}{c}{Experiment\tablefootmark{b}}&&\multicolumn{2}{c}{Theory\tablefootmark{c}}&&& \multicolumn{2}{c}{(\cite{Chardon})}&&& \multicolumn{2}{c}{(\cite{Winne})} \\ \hline $A_0$ & (MHz) && 77~512&22444(68) && 77~512&22486(31) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 77~512&2354(11) \\ $B_0$ & (MHz) && 12~055&104691(20) && 12~055&104683(10) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 12~055&10645(19) \\ $C_0$ & (MHz) && 10~416&114012(20) && 10~416&1139857(96) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 10~416&11512(19) \\ $\Delta_J$ & (kHz) && 9&994322(44) && 9&994275(20) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 9&99603(23) \\ $\Delta_{JK}$ & (kHz) && --86&22183(38) && --86&22189(19) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& --86&2486(20) \\ $\Delta_K$ & (kHz) && 1702&209(23) && 1702&2381(58) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 1702&447(15) \\ $\delta_J$ & (kHz) && 1&948525(11) && 1&9485409(48) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 1&948815(32) \\ $\delta_K$ & (kHz) && 42&7812(13) && 42&78384(53) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 42&7318(48) \\ $\Phi_J$ & (Hz) && 0&012733(33) && 0&012703(15) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 0&013143(97) \\ $\Phi_{JK}$ & (Hz) && 0&1319(25) && 0&13806(93) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 0&1021(60) \\ $\Phi_{KJ}$ & (Hz) && --10&6802(89) && --10&7008(33) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& --10&565(23) \\ $\Phi_K$ & (Hz) && 120&19(23) && 120&464(37) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 121&195(76) \\ $\phi_J$ & (Hz) && 0&005846(12) && 0&0058700(46) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 0&005763(11) \\ $\phi_{JK}$ & (Hz) && 0&07970(74) && 0&08105(30) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 0&0975(32) \\ $\phi_K$ & (Hz) && 15&74(13) && 16&087(49) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 14&82(22) \\ $L_J$ & (mHz) && --0&0000665(53) && --0&0000606(23) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& --0&0000719(93) \\ $L_{JJK}$ & (mHz) && --0&00213(10) && --0&001981(49) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& \multicolumn{2}{c}{} \\ $L_{JK}$ & (mHz) && --0&03163(97) && --0&03264(44) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& --0&0397(56) \\ $L_{KKJ}$ & (mHz) && 1&0191(63) && 1&0198(32) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& 0&875(34) \\ $L_K$ & (mHz) && --10&48(68) && --11&077(64) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& --11&82(11) \\ $l_J$ & (mHz) && --0&0000198(19) && --0&00002202(89) &&\multicolumn{2}{c}{}&&&\multicolumn{2}{c}{}&&& \multicolumn{1}{c}{}& \\ $C_{aa}$(H(C)) & (kHz) && --6&835(90) && --6&835(46) && --7&02 &&& --7&50(20) \\ $C_{bb}$(H(C)) & (kHz) && 1&038(33) && 1&037(17) && 1&04 &&& --7&2(40) \\ $C_{cc}$(H(C)) & (kHz) && --0&801(18) && --0&8014(96) && --0&82 &&& 7&5(40) \\ $C_{aa}$(H(O)) & (kHz) && --6&868(86) && --6&868(45) && --6&94 &&& --6&55(20) \\ $C_{bb}$(H(O)) & (kHz) && 0&781(38) && 0&781(20) && 0&77 &&& 8&2(40) \\ $C_{cc}$(H(O)) & (kHz) && --1&289(29) && --1&290(15) && --1&32 &&& --8&6(40) \\ 1.5$D_{aa}$ & (kHz) && 4&49(24) && 4&49(12) && 4&62 \\ ($D_{bb}$-$D_{cc}$)/4 & (kHz) && --3&48(68) && --3&53(35) && --3&47 \\ rms error\tablefootmark{d} & (kHz) && 1&08 && 0&59 \\ \hline \end{tabular} $$ \tablefoot {\tablefoottext{a}{Transition frequencies from this work and from Chardon et~al. (\cite{Chardon}) included in the fit.} \\ \tablefoottext{b}{Transition frequencies from this work, from Winnewisser et~al. (\cite{Winne}), and from Chardon et~al. (\cite{Chardon}) included in the~fit.} \\ \tablefoottext{c}{Equilibrium value at the CCSD(T)/cc-pCV5Z level augmented by vibrational corrections obtained at the CCSD(T)/cc-pCVTZ level by means of the VPT2 approach.} \\ \tablefoottext{d}{Standard deviation of the fit.}} \end{table}