\begin{table}%t4 \caption{\label{tab:flux}Observed and predicted line flux.} %\centerline {\begin{tabular}{l|rr|rr|cc} \hline \hline&&&&& \\ & \multicolumn{2}{c|}{\CI\ \unzero\ } & \multicolumn{2}{c|}{\CI\ \deuxun\ } & $\Sigma_{100}$ & p\\ & \multicolumn{2}{c|}{(Jy~km~s$^{-1}$)} & \multicolumn{2}{c|}{(Jy~km~s$^{-1}$)} & \multicolumn{2}{l}{($10^{17}$ cm$^{-2}$)} \\ \hline Obs. & \multicolumn{2}{c|}{$< 6.6$} & \multicolumn{2}{c|}{$<25 $} & & \\ \hline $T_k$ & 50~K & 100~K & 50~K & 100~K & \\ Model A & 30 & 48 & 68 & 135 & 12.0 & 2.3 \\ Model B & 13 & 15 & 33 & 52 & 2.3 & 1.5 \\ Model C & 26 & 37 & 60 & 111 & 8.7 & 1.4 \\ Thick & 60 & 128 & 125 & 300 & 1000 & 1.5 \\ \hline Model J/B4 & \multicolumn{2}{c|}{8--11} & \multicolumn{2}{c|}{24--29} & & \\ \hline \end{tabular}} \tablefoot{ Model A: $\chi=10^4$, $g/d$ = 100; B: $\chi=10^2$, $g/d$ = 10; C: Kurucz A3, $g/d$ = 10; Thick: flux for optically thick lines. Predictions are for an assumed local line width of 0.2 km~s$^{-1}$. Model J is from \citet{Jonkheid_etal2007}, their model B4. All the line fluxes are scaled for a source distance of 140~pc. $\Sigma_{100}$ and $p$ are the results of the power-law fitting of the modeled \CI\ surface densities (Fig. \ref{fig:coldens}).} \end{table}