\begin{table}%t3 %\centering \par \caption{\label{zusammenfassung}$P$ and $\dot{f}$ derived from different methods in this paper, compared to previous results.} \begin{tabular}{lllccc} \hline \hline\noalign{\smallskip} Solution & Period-8.391115 & $\dot{f}$ & rms & d.o.f. & $\chi^2$/d.o.f.\\ &$\times$$10^{-7}$~[s]&$\times$$10^{-16}$~[Hz/s] & [s] & & \\ \hline \multicolumn{6}{c}{This work, hard band} \\ ``all data'' & 3.336(22)& --9.961(67) & 0.62 & 70--3 & 45 \\ \multicolumn{3}{l}{After fitting a sine} & 0.29 & 70--5 & 7.8\\ \multicolumn{3}{l}{After fitting an abs(sine)} & 0.31 & 70--5 & 8.6\\ without ROSAT & 3.362(39)& --9.946(74) & 0.60 & 64--3 & 47 \\ \multicolumn{3}{l}{After fitting a sine} & 0.19 & 64--5 & 5.3\\ \multicolumn{3}{l}{After fitting an abs(sine)} & 0.21 & 64--5 & 6.5\\ without Chandra & 3.310(22)& --9.940(71) & 0.61 & 58--3 & 47 \\ \multicolumn{3}{l}{After fitting a sine} & 0.31 & 58--5 & 9.7\\ \multicolumn{3}{l}{After fitting an abs(sine)} & 0.33 & 58--5 & 8.7\\ $Z_{1}^{2}$ ``all data'' & 3.09(14) & --9.992(61) & 0.73 & 70--3 & 64\\ $Z_{1}^{2}$ without ROSAT & 2.96(13) & --10.047(34) & 0.58 & 64--3 & 46\\ $Z_{1}^{2}$ without Chandra & 3.09(13) & --9.980(36) & 0.72 & 58--3 & 51\\ \hline \multicolumn{6}{c}{This work, soft band} \\ ``all data'' & 3.429(22) & --9.956(72) & 0.50 & 70--3 & 40 \\ $Z_{1}^{2}$ ``all data'' & 3.31(62) & --9.959(17) & 0.50 & 70--3 & 39 \\ \noalign{\smallskip}\hline \multicolumn{6}{c}{Previous work (applied to the hard band)} \\ vK07 (``all data'')& 2.670(84) & --9.88(13) & 0.97 & 70--3 & 81 \\ vK07 (without ROSAT)& 2.846(77) & --9.74(04) & 1.30 & 64--3 & 207 \\ KvK05 (``all data'')& 3.20(13) & --9.918(15) & 0.64 & 70--3 & 56 \\ KvK05 (Chandra)& 3.05(16) & --9.97(06) & 0.64 & 12--3 & 57 \\ \hline \end{tabular} \tablefoot{For the timing solution in this work we always excluded the Chandra HRC observation~7251. Since the phase residuals seem to follow a periodic pattern we fitted a sine and an abs(sine), see Sect.~6. All errors correspond to 1$\sigma$ confidence (for the $Z_{1}^{2}$ solution see \citealt{2002AJ....124.1788R} with errors scaled to $\sqrt{\chi^{2}/{\rm d.o.f.}}$, for the phase coherent solutions, see Sect.~5).} \vspace*{2.5mm} \end{table}