\begin{table}%t1 %\centering \par \caption{\label{t1}Masses in the binary system SS 433 as a function of the radius parameter $f$.} \begin{tabular}{llrr} \hline\hline\noalign{\smallskip} $f$ &$M_{\rm S}$ &$M_{\rm C}$ &$m_{\rm X}$ \\ \hline 1.5 &38.8 &22.6 &16.1 \\ 1.6 &42.7 &24.1 &18.6 \\ 1.7 &46.8 &25.6 &21.0 \\ 1.8 &51.0 &27.2 &23.9 \\ 1.9 &55.3 &28.7 &26.7 \\ 2.0 &59.7 &30.2 &29.6 \\ 2.1 &64.2 &31.7 &32.6 \\ 2.2 &68.8 &33.2 &35.8 \\ 2.3 &73.6 &34.7 &38.9 \\ \hline \end{tabular} \tablefoot{$M_{\rm S}$ is the total mass, $M_{\rm C}$ is the mass of the companion and $m_{\rm X}$ is the mass of the compact object, in units of~$M_\odot$. (From Eq.~(3), assuming $v$ equal to 250~km~s$^{-1}$. The masses $M_{\rm S}$ scale with the cube of the orbital speed.)} \end{table}