\begin{table}%T3 \caption{\label{tab:fits_results}\label{tab3}Disk properties. } %%\centering \par \begin{tabular}{lcccccccc} \hline \hline\noalign{\smallskip} Object name & $R_{\rm{out}}$ (AW07) & $R_{\rm{out}}$-interval & $\alpha$ & $\beta$ & $M_{\rm{dust}}\times\kappa_{\rm{1~mm}}$ & $M_{\rm{dust}}^{q=2.5}$ & $M_{\rm{dust}}^{q=3}$ & $M_{\rm{dust}}^{q=3.5}$ \\ & (AU) & (AU) & & & ($M_{\odot} \times$ cm$^2$ g$^{-1}$) & ($M_{\odot}$) & ($M_{\odot}$) & ($M_{\odot}$) \\ (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\ \hline \noalign{\smallskip} {SR 4} & ... & 100$-$300 & 2.5 & 0.7 & $1.3\times10^{-4}$ & $2.1\times10^{-5}$ & $2.4\times10^{-5}$ & ... \\ {GSS 26} & ... & 100$-$300 & 1.9 & 0.0 & $3.5\times10^{-4}$ & $2.3\times10^{-3}$ & ... & ... \\ EL 20 & ... & 100$-$300 & 2.5 & 0.8 & $3.2\times10^{-4}$ & $4.3\times10^{-5}$ & $4.5\times10^{-5}$ & $1.9\times10^{-4}$ \\ DoAr 25 & 200 & 100$-$300 & 2.3 & 0.5 & $8.0\times10^{-4}$ & $1.8\times10^{-4}$ & $2.6\times10^{-4}$ & ... \\ EL 24 & 175 & 75$-$275 & 2.2 & 0.4 & $9.9\times10^{-4}$ & $2.9\times10^{-4}$ & $6.3\times10^{-4}$ & ... \\ EL 27 & 275 & 175$-$375 & 2.2 & 0.5 & $1.5\times10^{-3}$ & $3.5\times10^{-4}$ & $5.6\times10^{-4}$ & ... \\ SR 21 & 600 & 500$-$700 & 2.9 & 1.1 & $5.3\times10^{-4}$ & $4.9\times10^{-5}$ & $4.5\times10^{-5}$ & $ 5.5\times10^{-5}$ \\ {IRS 41} & ... & 100$-$300 & 2.1 & 0.3 & $1.3\times10^{-4}$ & $6.6\times10^{-5}$ & $6.8\times10^{-4}$ & ... \\ {YLW 16c} & ... & 100$-$300 & 2.4 & 0.0 & $2.3\times10^{-4}$ & $4.3\times10^{-5}$ & $5.6\times10^{-5}$ & ... \\ {IRS 49} & ... & 100$-$300 & 1.8 & 0.0 & $3.9\times10^{-5}$ & $2.2\times10^{-3}$ & ... & ... \\ {DoAr 33} & ... & 100$-$300 & 2.2 & 0.4 & $1.2\times10^{-4}$ & $3.4\times10^{-5}$ & $9.9\times10^{-5}$ & ... \\ WSB 52 & ... & 100$-$300 & 1.8 & 0.0 & $1.4\times10^{-5}$ & $2.6\times10^{-3}$ & ... & ... \\ WSB 60 & 350 & 250$-$450 & 1.9 & 0.3 & $5.6\times10^{-4}$ & $2.9\times10^{-4}$ & $3.0\times10^{-3}$ & ... \\ DoAr 44 & ... & 100$-$300 & 2.2 & 0.4 & $3.0\times10^{-4}$ & $8.8\times10^{-5}$ & $1.9\times10^{-4}$ & ... \\ {RNO 90} & ... & 100$-$300 & 2.3 & 0.4 & $1.1\times10^{-4}$ & $3.1\times10^{-5}$ & $7.1\times10^{-5}$ & ... \\ Wa Oph 6 & 275 & 175$-$375 & 2.4 & 0.7 & $4.9\times10^{-4}$ & $8.0\times10^{-5}$ & $9.8\times10^{-5}$ & ... \\ AS 209 & 200 & 100$-$300 & 2.4 & 0.7 & $7.9\times10^{-4}$ & $1.2\times10^{-4}$ & $1.4\times10^{-4}$ & ... \\ \hline \end{tabular} \tablefoot{(1) Underlined objects are those which have not been mapped to date through high-angular resolution imaging. The objects which have been mapped but do not have an estimate for the outer disk radius as reported in Col.~(2) have been spatially resolve by Andrews et~al.~(\cite{And09}). Contrary to Andrews \& Williams~(\cite{And07a}), they modeled the disk surface brightness by using a self-similar profile instead of a truncated power-law. For this reason no estimate for $R_{\rm{out}}$ could be extracted for these sources (see footnote in Sect.~4.1). (2)~Best-fit estimate of the disk outer radius by fitting the observed visibilities at sub-millimeter wavelengths using a truncated power-law for the surface density profile. AW07: Andrews \& Williams~(\cite{And07a}). (3)~Interval of the disk outer radius adopted for our analysis. (4)~Best-fit estimate of the spectral index of the SED $\alpha$ between 1 and 3~mm derived by considering for the outer disk radius the central value of the interval reported in Col.~3, and for the power-law index of the surface density profile $p=1$. (5)~Best-fit estimate of the spectral index of the dust opacity $\beta$ between 1 and 3~mm. (6)~Product between the dust mass and the dust opacity at 1~mm from the best-fit two-layer disk model. (7)~Dust mass obtained with a power-law index for the grain size distribution $q=2.5$. (8)~Like Col.~(7) but with $q=3$. The sources without an estimate of the dust mass have a $\beta$-value (reported in Col.~(6)) which cannot be reproduced with $q=3$. (9)~Like Col.~(8) but with $q=3.5$. } \vspace*{4mm}\end{table}