\begin{table} %\centering \par \caption {\label{TabFitCHp}CH$^{+}$ $(0{-}1)$ absorption line analysis results.} \begin{tabular}{l l c c c c } \hline\hline \noalign{\smallskip} Source & Remark\tablefootmark{a} & $\upsilon_0$ & $\Delta \upsilon$ & $\tau_0$ & $N$(CH$^{+}$) \\ & & (km s$^{-1}$)& (km s$^{-1}$) & & ($10^{12}$ cm$^{-2}$) \\ \hline {\bf \object{W33A}} & & 2.47 $\pm$ 0.13 & 5.18 $\pm$ 0.23 & 0.28 $\pm$ 0.01 & 4.68 $\pm$ 0.40 \\ & & 10.08 $\pm$ 1.17 & 8.38 $\pm$ 4.55 & 0.03 $\pm$ 0.01 & 0.95 $\pm$ 0.66 \\ & & 16.82 $\pm$ 0.05 & 2.56 $\pm$ 0.15 & 0.28 $\pm$ 0.01 & 2.37 $\pm$ 0.24 \\[0.4cm] {\bf \object{W49N}} & E & --3.62 $\pm$ 0.06 & 3.63 $\pm$ 0.13 & 0.18 $\pm$ 0.01 & $>$2.1 \\[0.4cm] {\bf \object{W51}} & & 0.91 $\pm$ 0.05 & 2.21 $\pm$ 0.12 & 0.18 $\pm$ 0.01 & 1.26 $\pm$ 0.13 \\ & & 7.37 $\pm$ 0.03 & 5.13 $\pm$ 0.07 & 0.83 $\pm$ 0.01 & 13.90 $\pm$ 0.35 \\ & & 13.14 $\pm$ 0.07 & 2.73 $\pm$ 0.18 & 0.21 $\pm$ 0.01 & 1.88 $\pm$ 0.20 \\ & & 17.34 $\pm$ 0.16 & 3.41 $\pm$ 0.48 & 0.10 $\pm$ 0.01 & 1.11 $\pm$ 0.23 \\ & & 23.44 $\pm$ 0.06 & 5.83 $\pm$ 0.15 & 0.35 $\pm$ 0.01 & 6.56 $\pm$ 0.28 \\ & & 39.97 $\pm$ 0.11 & 3.76 $\pm$ 0.22 & 0.18 $\pm$ 0.01 & 2.24 $\pm$ 0.21 \\ & E & 47.16 $\pm$ 0.47 & 5.25 $\pm$ 0.55 & 0.84 $\pm$ 0.09 & $>$14.3 \\ & E & 49.32 $\pm$ 0.06 & 2.40 $\pm$ 0.27 & 0.94 $\pm$ 0.16 & $>$7.3 \\ & E & 53.97 $\pm$ 0.11 & 7.26 $\pm$ 0.15 & 1.94 $\pm$ 0.03 & $>$45.9 \\ & E & 71.56 $\pm$ 0.03 & 3.73 $\pm$ 0.07 & 0.48 $\pm$ 0.01 & $>$5.8 \\ \hline \noalign{\smallskip} & remark & $\upsilon_{\rm min}$ & $\upsilon_{\rm max}$ & $\int \tau \rm d\upsilon$ & $N$(CH$^{+}$) \\ Source & & (km s$^{-1}$) & (km s$^{-1}$) & (km s$^{-1}$) & ($10^{12}$ cm$^{-2}$) \\ \hline {\bf \object{W33A}} & E, S & 20.0 & 45.0 & $>$53.6 & $>$166.5 \\[0.4cm] {\bf \object{W49N}} & E, S & 0.0 & 22.0 & $>$39.3 & $>$122.2 \\ & E & 22.0 & 30.0 & $>$13.5 & $>$41.9 \\ & S & 30.0 & 49.0 & $>$41.1 & $>$127.6 \\ & S & 49.0 & 77.5 & $>$48.1 & $>$149.5 \\[0.4cm] {\bf \object{W51}} & E, S & 60.0 & 70.0 & $>$17.7 & $>$54.9 \\ \hline \end{tabular} \tablefoot {The column densities are derived assuming an excitation temperature of 3~K, a lower limit for the absorption components detected at velocity intervals corresponding to the source itself. The first part of the table are the results of the multi-Gaussian decomposition procedure. The second part results from the analysis of the spectra over given velocity ranges: for the saturated \CHp\ features, lower limits on the column densities are inferred assuming a conservative lower limit on the optical depth of~2.3 (Neufeld et~al. 2010).\\ \tablefoottext{a}{E = absorption line profile observed in the star-forming region. $T_{\rm ex}$ may be underestimated, hence the lower limit on $N(\CHp)$. S = saturated line profile.}} \end{table}