\begin{table}%t2 %\centering \par \caption{\label{tab:model_results}Observed and modeled intensities for all the features in our dataset (see Table~\ref{tab:lines}).} \begin{tabular}{rcccc} \hline \hline\noalign{\smallskip} & $J_K$ & $\nu$ & $T_{\rm mb, obs}$ & $T_{\rm mb, mod}$ \\ & & (GHz) & (K) & (K) \\ \hline\noalign{\smallskip} 1 & $3_{1,2}{-}3_{1,3}$ & 481.8 & $<$$0.2^{\star}$ & $1\times 10^{-2}$ \\ 2 & $2_{0,2}{-}1_{1,1}$ & 490.6 & 0.4 & 0.4 \\ 3 & $1_{1,0}{-}1_{0,1}$ & 509.2 & 0.2 & 0.2 \\ 4 & $2_{2,0}{-}3_{0,3}$ & 537.8 & $<$$0.1^{\star}$ & 2$\times 10^{-4}$ \\ 5 & $2_{1,1}{-}2_{0,2}$ & 599.9 & 0.5 & 0.5 \\ \hline\noalign{\smallskip} 6 & $1_{1,0}{-}1_{1,1}$ & 80.6 & 0.1 & 4$\times 10^{-2}$ \\ 7 & $3_{1,2}{-}2_{2,1}$ & 225.9 & 0.4 & 0.4 \\ 8 & $2_{1,1}{-}2_{1,2}$ & 241.6 & 5.5$^{\star\star}$ & 1.7$^{\star\star}$ \\ 9 & $1_{0,1}{-}0_ {0,0}$ & 464.9 & $<$$0.7^{\star}$ & 0.6 \\ 10 & $1_{1,1}{-}0_{0,0}$ & 893.6 & 0.7$^{\star\star\star}$ & 0.7 \\ \hline \end{tabular} \tablefoot{$^{\star}$ = upper limit ($3 \times \sigma_{\rm rms}$); $^{\star\star}$ = integrated area (K~km~s$^{-1}$); $^{\star\star\star}$~=~line-to-continuum ratio.} \end{table}