\begin{table}%t4 \caption{\label{online1}Summary of o-H$_2$$^{18}$O~$1_{10}$ -- 1$_{01}$ model results. } \scriptsize %\centering \par \begin{tabular}{cccc} \hline \hline\noalign{\smallskip} \multicolumn{2}{c} {Envelope abundance} & $T_{\rm MB}^{\rm peak}$ & $\int T_{\rm MB}~{\rm d}\varv$ \\ Inner & Outer & (K) & (K km s$^{-1}$) \\ \hline\noalign{\smallskip} $1 \times 10^{-5}$ & $3 \times 10^{-10}$ & 0.017 & 0.071 \\ $3 \times 10^{-6}$ & $3 \times 10^{-10}$ & 0.018 & 0.075 \\ $1 \times 10^{-6}$ & $3 \times 10^{-10}$ & 0.017 & 0.069 \\ $3 \times 10^{-7}$ & $3 \times 10^{-10}$ & 0.016 & 0.065 \\ $1 \times 10^{-7}$ & $3 \times 10^{-10}$ & 0.015 & 0.060 \\ $3 \times 10^{-8}$ & $3 \times 10^{-10}$ & 0.014 & 0.054 \\ $1 \times 10^{-8}$ & $3 \times 10^{-10}$ & 0.014 & 0.050 \\ \noalign{\smallskip} $1 \times 10^{-5}$ & $2 \times 10^{-10}$ & 0.015 & 0.063 \\ $3 \times 10^{-6}$ & $2 \times 10^{-10}$ & 0.014 & 0.060 \\ $1 \times 10^{-6}$ & $2 \times 10^{-10}$ & 0.014 & 0.060 \\ $3 \times 10^{-7}$ & $2 \times 10^{-10}$ & 0.013 & 0.052 \\ \noalign{\smallskip} $1 \times 10^{-5}$ & $1 \times 10^{-10}$ & 0.010 & 0.043 \\ $1 \times 10^{-6}$ & $1 \times 10^{-10}$ & 0.009 & 0.038 \\ $3 \times 10^{-7}$ & $1 \times 10^{-10}$ & 0.009 & 0.036 \\ $1 \times 10^{-7}$ & $1 \times 10^{-10}$ & 0.008 & 0.032 \\ $3 \times 10^{-8}$ & $1 \times 10^{-10}$ & 0.007 & 0.027 \\ \hline \end{tabular} \tablefoot{The observed line has a $T_{\rm MB}^{\rm peak} = 0.015$~K and an $\int T_{\rm MB}~{\rm d}\varv = 0.071$~K~km$^{-1}$, the best fitting model is selected by comparison with the latter.} \end{table}