\begin{table}%t1 %\centering \par \caption {\label{tab:res}Column densities of nitrogen hydrides towards \iras.} \begin{tabular}{l c c c c c c c c c c c}\hline\hline \noalign{\smallskip} Species & Transition & Component\tfm{a} & Frequency& HPBW & $T_{{\rm C},mb}$\tfm{b} & $T_l$\tfm{c} & \tauk & \texc & $FWHM$\tfm{d} & $N_{\rm tot}$ \\ & & & GHz & arcsec & K &K && K & \kms & \dix{14}~\cc \\ \hline NH\tfm{e}& $0_1\ra1_0$ & $\frac{3}{2},\frac{5}{2}\ra\frac{1}{2},\frac{3}{2}$ & 946.476 & 23 & 0.8 & $-3.8\pm0.6$ & $2.8\pm0.7$ & 9.5 & $0.60$ & $2.20\pm0.80$ \\ o-{NH$_2$} & $0_{00\frac{1}{2}}\ra1_{11\frac{3}{2}}$ & $\frac{3}{2},\frac{5}{2}\ra\frac{5}{2},\frac{7}{2}$ & 952.578 & 23 & 0.9 & $-9.0\pm0.5$ & $12.8\pm0.7$ & 8.5 & $0.60$ & $0.40\pm0.06$\\ & $0_{00\frac{1}{2}}\ra1_{11\frac{1}{2}}$ & $\frac{3}{2},\frac{5}{2}\ra\frac{3}{2},\frac{5}{2}$ & 959.512 & 22 & 0.9 & $-2.5\pm0.2$ & $4.9\pm0.7$ & 9.5 & $0.60$ & $0.59\pm0.12$\\ p-\nhhh & $1 {-} 2$ & $(1,-) {-} (1,-)$ & 1168.453 & 18 & 1.2 & &$300{-}70$ & $8{-}10$ & 0.50 & $200{-}35$\\ o-\nhhh & $1 {-} 2$ & $(0,+) {-} (0,+)$ & 1214.853 & 18 & 1.3 & &$470{-}130$ & $8{-}10$ & 0.50 & $200{-}35$\\ p-\nhhh & $1 {-} 2$ & $(1,+) {-} (1,+)$ & 1215.246 & 18 & 1.3 & &$330{-}80$ & $8{-}10$ & 0.50 & $200{-}35$\\ p-\nhhh & $2 {-} 3$ & $(2,-) {-} (2,-)$ & 1763.823 & 12 & 2.2 & &$2.0{-}1.4$ & $8{-}10$ & 0.50 & $200{-}35$\\ \hline % o-\nhhh & $2 - 3$ & $(0,+) - (0,+)$ & 1763524.266 & 12 & 2.2 & & 0.50 & 3.80 & $8-10$ & $200-35$\\ % p-\nhhh & $2 - 3$ & $(1,+) - (1,-)$ & 1763601.209 & 12 & 2.2 & & 0.50 & 3.80 & $8-10$ & $200-35$\\ \end{tabular} \tfoot{ \tft{a} {For NH, the quantum numbers for the rotational transition $N_J$ are $\vec{F}_1=\vec{I}_{\rm H}+\vec{J}$ and $\vec{F}=\vec{I}_{\rm N}+\vec{F}_1$ \citep{klaus1997}. For the $N_{K_aK_cJ}$ rotational transition of {NH$_2$}, the quantum numbers are $\vec{F}_1=\vec{I}_{\rm N}+\vec{J}$ and $\vec{F}=\vec{I}_{\rm H}+\vec{F}_1$ \citep{muller1999}. In the case of ammonia, quantum numbers are given separately for $\vec{J}=\vec{N}+\vec{S}$ and $(K,\epsilon)$, where $\epsilon$ is the symmetry index \citep[see][]{maret2009}. {For these lines, the frequency given is that of the brightest HF component.}} \tft{b}{Single-sideband continuum in a \tmb\ scale.} \tft{c} {{$T_l = \tauk[J_\nu(\texc)-J_\nu(\tcmb)-T_{{\rm C},mb}]$ from the HFS fit. In the case of ammonia, see Sect.~3.}} \tft{d}{A conservative uncertainty of 0.25~MHz (0.08~\kms) imposed by the HIPE 2.8 pipeline was retained.} \tft{e}{The integrated line opacity is calculated as $\int \tau \ud v = 1.06~ FWHM \times \tauk$.} \tft{d}{\cite{bacmann2010}}.} \vspace*{-3mm} \end{table}