Open Access

Table C.2.

Best-fit parameters for power law and broken power law fits for different time shifts.

Power law fit Broken power law fit Best-fit stats.
Time-shift a b tb α1 α2 A F-stat. p-value Best-fit
[days] [km/s] [days] [km/s]
-6 30000 7000 + 10000 $ {30000_{-7000}^{+10000}} $ 0 . 40 0.10 + 0.10 $ {-0.40_{-0.10}^{+0.10}} $ 12 . 7 0.8 + 0.9 $ {12.7_{-0.8}^{+0.9}} $ 0 . 13 0.03 + 0.03 $ {-0.13_{-0.03}^{+0.03}} $ 1 . 1 0.1 + 0.1 $ {-1.1_{-0.1}^{+0.1}} $ 16100 700 + 700 $ {16100_{-700}^{+700}} $ 74.824 0.0028 BPL
-5 40000 10000 + 10000 $ {40000_{-10000}^{+10000}} $ 0 . 40 0.10 + 0.10 $ {-0.40_{-0.10}^{+0.10}} $ 13 . 8 0.8 + 1.0 $ {13.8_{-0.8}^{+1.0}} $ 0 . 17 0.04 + 0.04 $ {-0.17_{-0.04}^{+0.04}} $ 1 . 1 0.1 + 0.1 $ {-1.1_{-0.1}^{+0.1}} $ 15900 800 + 700 $ {15900_{-800}^{+700}} $ 76.968 0.0026 BPL
-4 50000 10000 + 20000 $ {50000_{-10000}^{+20000}} $ 0 . 50 0.10 + 0.10 $ {-0.50_{-0.10}^{+0.10}} $ 14 . 8 0.8 + 1.0 $ {14.8_{-0.8}^{+1.0}} $ 0 . 20 0.04 + 0.04 $ {-0.20_{-0.04}^{+0.04}} $ 1 . 2 0.1 + 0.1 $ {-1.2_{-0.1}^{+0.1}} $ 15800 700 + 700 $ {15800_{-700}^{+700}} $ 75.161 0.0027 BPL
-3 60000 20000 + 30000 $ {60000_{-20000}^{+30000}} $ 0 . 60 0.10 + 0.10 $ {-0.60_{-0.10}^{+0.10}} $ 15 . 8 0.9 + 1.0 $ {15.8_{-0.9}^{+1.0}} $ 0 . 23 0.05 + 0.05 $ {-0.23_{-0.05}^{+0.05}} $ 1 . 3 0.1 + 0.1 $ {-1.3_{-0.1}^{+0.1}} $ 15800 800 + 700 $ {15800_{-800}^{+700}} $ 68.606 0.0031 BPL
-2 70000 20000 + 40000 $ {70000_{-20000}^{+40000}} $ 0 . 60 0.10 + 0.10 $ {-0.60_{-0.10}^{+0.10}} $ 17 . 0 1.0 + 1.0 $ {17.0_{-1.0}^{+1.0}} $ 0 . 26 0.05 + 0.05 $ {-0.26_{-0.05}^{+0.05}} $ 1 . 3 0.1 + 0.1 $ {-1.3_{-0.1}^{+0.1}} $ 15700 800 + 800 $ {15700_{-800}^{+800}} $ 64.125 0.0035 BPL
-1 90000 30000 + 40000 $ {90000_{-30000}^{+40000}} $ 0 . 70 0.10 + 0.10 $ {-0.70_{-0.10}^{+0.10}} $ 18 . 0 1.0 + 1.0 $ {18.0_{-1.0}^{+1.0}} $ 0 . 28 0.06 + 0.06 $ {-0.28_{-0.06}^{+0.06}} $ 1 . 4 0.1 + 0.1 $ {-1.4_{-0.1}^{+0.1}} $ 15600 900 + 800 $ {15600_{-900}^{+800}} $ 56.881 0.0041 BPL
0 110000 30000 + 40000 $ {110000_{-30000}^{+40000}} $ 0 . 70 0.10 + 0.10 $ {-0.70_{-0.10}^{+0.10}} $ 19 . 0 1.0 + 1.0 $ {19.0_{-1.0}^{+1.0}} $ 0 . 31 0.07 + 0.07 $ {-0.31_{-0.07}^{+0.07}} $ 1 . 4 0.1 + 0.1 $ {-1.4_{-0.1}^{+0.1}} $ 15600 900 + 900 $ {15600_{-900}^{+900}} $ 52.735 0.0046 BPL
1 120000 40000 + 40000 $ {120000_{-40000}^{+40000}} $ 0 . 80 0.10 + 0.10 $ {-0.80_{-0.10}^{+0.10}} $ 20 . 0 1.0 + 1.0 $ {20.0_{-1.0}^{+1.0}} $ 0 . 34 0.07 + 0.08 $ {-0.34_{-0.07}^{+0.08}} $ 1 . 5 0.1 + 0.1 $ {-1.5_{-0.1}^{+0.1}} $ 15600 900 + 900 $ {15600_{-900}^{+900}} $ 44.667 0.0059 BPL
2 140000 40000 + 40000 $ {140000_{-40000}^{+40000}} $ 0 . 78 0.09 + 0.10 $ {-0.78_{-0.09}^{+0.10}} $ 21 . 0 1.0 + 1.0 $ {21.0_{-1.0}^{+1.0}} $ 0 . 36 0.08 + 0.09 $ {-0.36_{-0.08}^{+0.09}} $ 1 . 5 0.1 + 0.2 $ {-1.5_{-0.1}^{+0.2}} $ 16000 900 + 1000 $ {16000_{-900}^{+1000}} $ 36.955 0.0077 BPL
3 150000 40000 + 40000 $ {150000_{-40000}^{+40000}} $ 0 . 79 0.07 + 0.10 $ {-0.79_{-0.07}^{+0.10}} $ 22 . 0 1.0 + 1.0 $ {22.0_{-1.0}^{+1.0}} $ 0 . 39 0.09 + 0.09 $ {-0.39_{-0.09}^{+0.09}} $ 1 . 6 0.2 + 0.2 $ {-1.6_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 31.043 0.0099 BPL
4 150000 40000 + 30000 $ {150000_{-40000}^{+30000}} $ 0 . 79 0.06 + 0.10 $ {-0.79_{-0.06}^{+0.10}} $ 23 . 0 1.0 + 1.0 $ {23.0_{-1.0}^{+1.0}} $ 0 . 40 0.10 + 0.10 $ {-0.40_{-0.10}^{+0.10}} $ 1 . 7 0.2 + 0.2 $ {-1.7_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 26.984 0.0121 BPL
5 160000 40000 + 30000 $ {160000_{-40000}^{+30000}} $ 0 . 79 0.05 + 0.10 $ {-0.79_{-0.05}^{+0.10}} $ 24 . 0 1.0 + 2.0 $ {24.0_{-1.0}^{+2.0}} $ 0 . 40 0.10 + 0.10 $ {-0.40_{-0.10}^{+0.10}} $ 1 . 7 0.2 + 0.2 $ {-1.7_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 25.628 0.013 BPL
6 160000 40000 + 30000 $ {160000_{-40000}^{+30000}} $ 0 . 78 0.05 + 0.10 $ {-0.78_{-0.05}^{+0.10}} $ 25 . 0 2.0 + 1.0 $ {25.0_{-2.0}^{+1.0}} $ 0 . 50 0.10 + 0.10 $ {-0.50_{-0.10}^{+0.10}} $ 1 . 8 0.2 + 0.2 $ {-1.8_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 25.731 0.0129 BPL
7 170000 40000 + 30000 $ {170000_{-40000}^{+30000}} $ 0 . 78 0.05 + 0.10 $ {-0.78_{-0.05}^{+0.10}} $ 26 . 0 2.0 + 2.0 $ {26.0_{-2.0}^{+2.0}} $ 0 . 50 0.10 + 0.10 $ {-0.50_{-0.10}^{+0.10}} $ 1 . 8 0.2 + 0.2 $ {-1.8_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 27.953 0.0115 BPL
8 160000 50000 + 30000 $ {160000_{-50000}^{+30000}} $ 0 . 76 0.05 + 0.10 $ {-0.76_{-0.05}^{+0.10}} $ 27 . 0 2.0 + 2.0 $ {27.0_{-2.0}^{+2.0}} $ 0 . 50 0.10 + 0.10 $ {-0.50_{-0.10}^{+0.10}} $ 1 . 9 0.2 + 0.2 $ {-1.9_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 30.732 0.01 BPL
9 160000 50000 + 30000 $ {160000_{-50000}^{+30000}} $ 0 . 75 0.05 + 0.10 $ {-0.75_{-0.05}^{+0.10}} $ 28 . 0 2.0 + 2.0 $ {28.0_{-2.0}^{+2.0}} $ 0 . 50 0.10 + 0.20 $ {-0.50_{-0.10}^{+0.20}} $ 1 . 9 0.2 + 0.2 $ {-1.9_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 34.483 0.0085 BPL
10 160000 50000 + 30000 $ {160000_{-50000}^{+30000}} $ 0 . 74 0.05 + 0.10 $ {-0.74_{-0.05}^{+0.10}} $ 29 . 0 2.0 + 1.0 $ {29.0_{-2.0}^{+1.0}} $ 0 . 60 0.10 + 0.20 $ {-0.60_{-0.10}^{+0.20}} $ 2 . 0 0.2 + 0.2 $ {-2.0_{-0.2}^{+0.2}} $ 16000 1000 + 1000 $ {16000_{-1000}^{+1000}} $ 37.033 0.0077 BPL

Notes. Values shown are the median and 16th and 84th percentile uncertainties. The BPL results for a time-shift of 0 days agree within uncertainties with the parameters of the generating function shown in Table C.1.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.