Table D.1
Same as Table 1 for a multi-dimensional GPR fit to both dT and RVs.
| Parameter | No planet | b+c | b+c+e | b+c+e+d | Prior |
|---|---|---|---|---|---|
| θ1 (K) | 10.9 ± 1.2 | 10.9 ± 1.2 | 11.0 ± 1.2 | 11.1 ± 1.2 | mod Jeffreys (σdT) |
| θ2 (d) | 4.8601 ± 0.0021 | 4.8596 ± 0.0023 | 4.8595 ± 0.0023 | 4.8595 ± 0.0022 | Gaussian (4.86, 0.1) |
| θ3 (d) | ![]() |
![]() |
![]() |
![]() |
log Gaussian (log 120, log 1.5) |
| θ4 | 0.52 ± 0.04 | 0.52 ± 0.04 | 0.52 ± 0.04 | 0.53 ± 0.04 | Uniform (0, 3) |
| θ5 (K) | 0.2 ± 0.2 | 0.2 ± 0.2 | 0.2 ± 0.2 | 0.2 ± 0.2 | mod Jeffreys (σdT) |
| θ6 (m s−1) | ![]() |
![]() |
![]() |
![]() |
mod Jeffreys (σRV) |
| θ7 (m s−1) | ![]() |
![]() |
![]() |
![]() |
mod Jeffreys (σRV) |
| θ8 (m s−1) | 17.9 ± 0.8 | 17.2 ± 0.8 | 16.9 ± 0.8 | 16.8 ± 0.8 | mod Jeffreys (σRV) |
| Kb (m s−1) | ![]() |
![]() |
![]() |
mod Jeffreys (σRV) | |
| Pb (d) | 8.463446 | 8.463446 | 8.463446 | fixed from Mallorquín et al. (2024) | |
| BJDb (2459000+) | −669.649175 | −669.649175 | −669.649175 | fixed from Mallorquín et al. (2024) | |
| Kc (m s−1) | ![]() |
![]() |
![]() |
mod Jeffreys (σRV) | |
| Pc (d) | 18.859018 | 18.859018 | 18.859018 | fixed from Mallorquín et al. (2024) | |
| BJDc (2459000+) | −657.776513 | −657.776513 | −657.776513 | fixed from Mallorquín et al. (2024) | |
| Ke (m s−1) | ![]() |
![]() |
mod Jeffreys (σRV) | ||
| Pe (d) | 33.15 ± 0.08 | 33.15 ± 0.10 | Gaussian (33.1, 1.0) | ||
| BJDe (2459000+) | 118.6 ± 1.6 | 118.9 ± 1.9 | Gaussian (118, 8) | ||
| Kd (m s−1) | ![]() |
mod Jeffreys (σRV) | |||
| Pd (d) | 12.73596 | fixed from Wittrock et al. (2023) | |||
| BJDd (2459000+) | −659.44219 | fixed from Wittrock et al. (2023) | |||
(dT) |
0.55 | 0.53 | 0.55 | 0.53 | |
(RVs) |
50.5 | 46.9 | 44.4 | 44.0 | |
| rms (m s−1) | 16.7 | 16.1 | 15.6 | 15.6 | |
| log ℒM | 115.9 | 125.8 | 136.2 | 137.8 | |
| log BF = Δ log ℒM | −9.9 | 0.0 | 10.4 | 12.0 |
Notes. For the multi-dimensional GPR fit, including three additional parameters, θ1 refers to the amplitude of the dT component (F term), θ6 and θ7 to the amplitudes of the RV component (F and F′ terms), θ5 and θ8 to the excess jitter of the dT and RV components, whereas the other terms keep the same meaning as in Table 1 (for more information, see Rajpaul et al. 2015). We note that θ6 is close to 0, confirming that for AU Mic, RVs are highly correlated with the first derivative of dT (see Sec. 6)
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
![$\[$132_{-21}^{+25}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq66.png)
![$\[$121_{-18}^{+21}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq67.png)
![$\[$118_{-16}^{+19}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq68.png)
![$\[$119_{-16}^{+18}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq69.png)
![$\[$0.9_{-0.5}^{+0.9}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq70.png)
![$\[$0.9_{-0.4}^{+0.8}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq71.png)
![$\[$0.9_{-0.4}^{+0.8}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq72.png)
![$\[$0.9_{-0.4}^{+0.8}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq73.png)
![$\[$22.6_{-2.5}^{+2.8}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq74.png)
![$\[$22.6_{-2.4}^{+2.7}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq75.png)
![$\[$22.8_{-2.4}^{+2.7}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq76.png)
![$\[$23.1_{-2.4}^{+2.7}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq77.png)
![$\[$3.1_{-1.1}^{+1.6}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq78.png)
![$\[$3.0_{-1.0}^{+1.6}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq79.png)
![$\[$3.1_{-1.1}^{+1.6}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq80.png)
![$\[$4.5_{-1.1}^{+1.5}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq81.png)
![$\[$4.3_{-1.1}^{+1.5}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq82.png)
![$\[$4.1_{-1.1}^{+1.6}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq83.png)
![$\[$5.1_{-1.2}^{+1.7}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq84.png)
![$\[$4.9_{-1.3}^{+1.7}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq85.png)
![$\[$1.3_{-0.6}^{+1.2}$\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq86.png)
![$\[\chi_{\mathrm{r}}^{2}\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq87.png)
![$\[\chi_{\mathrm{r}}^{2}\]$](/articles/aa/full_html/2025/08/aa55371-25/aa55371-25-eq88.png)