Table A.1
Adopted yield grids and prescriptions for the timescales important to chemical evolution modelling.
| Process | Shape | Values | Yields |
|---|---|---|---|
| n1 = 1.4 | |||
| Star formation | ![]() |
n2 = 4.0 | |
| κ = 2.2(109 M⊙)−n1+n2 Gyr−1 | |||
| Σcut–off = 0.004 · 109 M⊙ kpc−2 | |||
| ccSNe & AGB | PARSEC isochrones (1,2,3) including the thermally pulsing-AGB phase (4,5,6) | τPARSEC(M*, Z) | (7,8,9) |
| tSNIa,delay = 0.45 Gyr | |||
| SNeIa | ![]() |
fSNIa,short = 0.01 | |
| τSNIa,short = 100 Myr | W70 yields (10) | ||
| τSNIa,long = 1.5 Gyr | |||
| NSMs | ![]() |
tNSM,delay = 20 Myr | unclear, a fixed Eu yield is assumed and calibrated to the solar neighbourhood abundance by scaling the fraction of neutron stars undergoing a merger at each time step |
| τNSM = 300 Myr | |||
| cooling | ![]() |
Λ = 1 Gyr | |
| R0 = 1.5 kpc | |||
| Rend = 3.75 kpc | |||
| inside-out formation | ![]() |
t0 = 1.0 Gyr | |
| tg = 0.6 Gyr | |||
| tend = 12 kpc |
References. (1) Bressan et al. (2012), (2) Chen et al. (2015), (3) Tang et al. (2014), (4) Marigo et al. (2017), (5) Pastorelli et al. (2019), (6) Pastorelli et al. (2020), (7) Maeder (1992), (8) Marigo (2001), (9) Chieffi & Limongi (2004), (10) Iwamoto et al. (1999).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
![$\[\dot{\Sigma}_*= \begin{cases}\kappa \Sigma_{\text {gas }}^{n 1} & \Sigma_{\text {cold }}>\Sigma_{\mathrm {cut-off }} \\ \kappa\left(\Sigma_{\mathrm {cut-off }}+\Sigma_{\text {hot }}\right)^{n_1-n_2} \Sigma_{\text {gas }}^{n_2} & \text { otherwise }\end{cases}\]$](/articles/aa/full_html/2025/09/aa54932-25/aa54932-25-eq8.png)
![$\[\Psi_{\text {SNIa}}(t)= \begin{cases}0 & t<t_{\text {SNIa,delay }} \\ f_{\text {SNIa,short}} \mathrm{e}^{-t / \tau_{\text {SNla,short}}}+\left(1-f_{\text {SNla,short}}\right) \mathrm{e}^{-t / \tau_{\text {SNla,long}}} & \text { otherwise }\end{cases}\]$](/articles/aa/full_html/2025/09/aa54932-25/aa54932-25-eq9.png)
![$\[\Psi_{\mathrm{NSM}}(t)= \begin{cases}0 & t<t_{\mathrm{NSM}, \text {delay}} \\ e^{-t / \tau_{\mathrm{NSM}}} & \text { otherwise}\end{cases}\]$](/articles/aa/full_html/2025/09/aa54932-25/aa54932-25-eq10.png)
![$\[\dot{M}_{\mathrm{h}, \text { cooling }}=-\Lambda M_{\mathrm{h}}\]$](/articles/aa/full_html/2025/09/aa54932-25/aa54932-25-eq11.png)
![$\[R_{\mathrm{gas}}(t)=R_0+N\left[\arctan \left(\frac{t-t_0}{t_g}\right)-\arctan \left(\frac{t_0}{t_g}\right)\right]\]$](/articles/aa/full_html/2025/09/aa54932-25/aa54932-25-eq12.png)