Open Access

Table C.1.

Model parameter priors and inferred values from observed image positions and stellar velocity dispersion measurements.

Parameter Description Prior iso_halo PL_halo iso_halo+sheet iso_halo+ell_BCG baseline
Scaling relation (IDphot = 115)

σv, 115 [km/s] velocity dispersion 𝒢(206,25) 180 22 + 21 $ 180_{-22}^{+21} $ 180 ± 21 170 ± 21 180 22 + 20 $ 180_{-22}^{+20} $ 170 22 + 23 $ 170_{-22}^{+23} $
rt, 115 [″] truncation radius flat(1.8,40) 2 . 2 0.3 + 0.9 $ 2.2_{-0.3}^{+0.9} $ 2 . 4 0.5 + 1.1 $ 2.4_{-0.5}^{+1.1} $ 2 . 2 0.3 + 0.7 $ 2.2_{-0.3}^{+0.7} $ 2 . 3 0.4 + 0.8 $ 2.3_{-0.4}^{+0.8} $ 2 . 2 0.3 + 0.6 $ 2.2_{-0.3}^{+0.6} $

BCG

(xBCG, yBCG) [″] centroid exact (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
qBCG axis ratio exact or flat(0.4,1) 1 1 1 0 . 89 0.12 + 0.08 $ 0.89_{-0.12}^{+0.08} $ 1
ϕBCG [°] position angle flat(0,360) 36 ± 63
θE, ∞, BCG [″] Einstein radius 𝒢(3.08,0.32) 3 . 36 0.39 + 0.25 $ 3.36_{-0.39}^{+0.25} $ 3 . 17 0.23 + 0.30 $ 3.17_{-0.23}^{+0.30} $ 3 . 07 0.25 + 0.34 $ 3.07_{-0.25}^{+0.34} $ 2 . 99 0.22 + 0.24 $ 2.99_{-0.22}^{+0.24} $ 3 . 16 0.24 + 0.29 $ 3.16_{-0.24}^{+0.29} $
rt, BCG [″] truncation radius flat(1,50) 41 14 + 13 $ 41_{-14}^{+13} $ 35 20 + 18 $ 35_{-20}^{+18} $ 33 12 + 16 $ 33_{-12}^{+16} $ 27 12 + 15 $ 27_{-12}^{+15} $ 33 13 + 18 $ 33_{-13}^{+18} $

Cluster member not in scaling relation

(x116, y116) [″] centroid exact (0.314, 9.819) (0.314, 9.819) (0.314, 9.819) (0.314, 9.819) (0.314, 9.819)
q116 axis ratio exact 1 1 1 1 1
θE, ∞, 116 [″] Einstein radius G1 𝒢(1.67,0.19) 1.6 ± 0.2 1.6 ± 0.2 1.6 ± 0.2 1.6 ± 0.2 1.6 ± 0.2
rt, 116 [″] truncation radius flat(0.05,10) 1 . 1 0.4 + 0.5 $ 1.1_{-0.4}^{+0.5} $ 1.1 ± 0.4 1 . 1 0.4 + 0.5 $ 1.1_{-0.4}^{+0.5} $ 1 . 1 0.3 + 0.4 $ 1.1_{-0.3}^{+0.4} $ 1 . 0 0.4 + 0.5 $ 1.0_{-0.4}^{+0.5} $

Jellyfish galaxies

(xJF1, yJF1) [″] centroid exact (19.094, −13.361) (19.094, −13.361) (19.094, −13.361) (19.094, −13.361) (19.094, −13.361)
θE, ∞, JF1 [″] Einstein radius flat(0.01,10) 0.25 ± 0.07 0.25 ± 0.08 0 . 23 0.10 + 0.09 $ 0.23_{-0.10}^{+0.09} $ 0 . 20 0.06 + 0.05 $ 0.20_{-0.06}^{+0.05} $ 0 . 13 0.05 + 0.06 $ 0.13_{-0.05}^{+0.06} $
rt, JF1 [″] truncation radius exact 5 5 5 5 5
(xJF2, yJF2) [″] centroid exact (−5.114, 6.941) (−5.114, 6.941) (−5.114, 6.941) (−5.114, 6.941) (−5.114, 6.941)
θE, ∞, JF2 [″] Einstein radius flat(0.01,10) 0 . 79 0.14 + 0.16 $ 0.79_{-0.14}^{+0.16} $ 0 . 64 0.14 + 0.12 $ 0.64_{-0.14}^{+0.12} $ 0.63 ± 0.14 0 . 73 0.16 + 0.17 $ 0.73_{-0.16}^{+0.17} $ 0 . 57 0.24 + 0.27 $ 0.57_{-0.24}^{+0.27} $
rt, JF2 [″] truncation radius exact 5 5 5 5 5
(xJF3, yJF3) [″] centroid exact (−1.649, 2.597) (−1.649, 2.597) (−1.649, 2.597) (−1.649, 2.597) (−1.649, 2.597)
θE, ∞, JF3 [″] Einstein radius flat(0.01,10) 1 . 5 0.6 + 0.4 $ 1.5_{-0.6}^{+0.4} $ 1 . 3 0.4 + 0.5 $ 1.3_{-0.4}^{+0.5} $ 1 . 3 0.3 + 0.4 $ 1.3_{-0.3}^{+0.4} $ 0 . 9 0.5 + 0.4 $ 0.9_{-0.5}^{+0.4} $ 1 . 4 0.3 + 0.4 $ 1.4_{-0.3}^{+0.4} $
rt, JF3 [″] truncation radius exact 5 5 5 5 5

Foreground galaxy

(xfg, yfg) [″] centroid exact (−0.868, −16.564) (−0.868, −16.564) (−0.868, −16.564) (−0.868, −16.564) (−0.868, −16.564)
θE, ∞, fg [″] Einstein radius flat(0.1,10) 0 . 20 0.03 + 0.02 $ 0.20_{-0.03}^{+0.02} $ 0.24 ± 0.04 0 . 21 0.03 + 0.05 $ 0.21_{-0.03}^{+0.05} $ 0.20 ± 0.03 0 . 18 0.02 + 0.04 $ 0.18_{-0.02}^{+0.04} $
rt, fg [″] truncation radius flat(0.1,40) 16 11 + 14 $ 16_{-11}^{+14} $ 2 . 3 0.9 + 1.5 $ 2.3_{-0.9}^{+1.5} $ 7 4 + 13 $ 7_{-4}^{+13} $ 18 14 + 15 $ 18_{-14}^{+15} $ 8 7 + 28 $ 8_{-7}^{+28} $

Background galaxy

(xbkg, ybkg) [″] centroid exact (6.871, 3.843) (6.871, 3.843) (6.871, 3.843) (6.871, 3.843) (6.871, 3.843)
θE, ∞, bkg [″] Einstein radius 𝒢(1.66,0.10) 1 . 65 0.09 + 0.10 $ 1.65_{-0.09}^{+0.10} $ 1 . 67 0.12 + 0.11 $ 1.67_{-0.12}^{+0.11} $ 1 . 67 0.09 + 0.10 $ 1.67_{-0.09}^{+0.10} $ 1.67 ± 0.09 1.64 ± 0.10
rt, bkg [″] truncation radius flat(0.1,40) 26 14 + 10 $ 26_{-14}^{+10} $ 22 ± 12 15 8 + 20 $ 15_{-8}^{+20} $ 14 8 + 14 $ 14_{-8}^{+14} $ 14 8 + 18 $ 14_{-8}^{+18} $

Dark matter halos

xDM1 [″] x centroid flat(−20,20) −0.1 ± 0.3 −0.2 ± 0.3 −0.1 ± 0.3 −0.3 ± 0.3 0.1 ± 0.3
yDM1 [″] y centroid flat(−20,20) −1.2 ± 0.5 0 . 9 0.5 + 0.4 $ -0.9_{-0.5}^{+0.4} $ 1 . 1 0.4 + 0.3 $ -1.1_{-0.4}^{+0.3} $ 0 . 6 0.4 + 0.5 $ -0.6_{-0.4}^{+0.5} $ −1.1 ± 0.4
qDM1 axis ratio flat(0.2,1) 0.64 ± 0.02 0.64 ± 0.02 0.63 ± 0.02 0 . 66 0.02 + 0.03 $ 0.66_{-0.02}^{+0.03} $ 0.63 ± 0.02
ϕDM1 [°] position angle flat(0,360) 43 ± 1 43 2 + 1 $ 43_{-2}^{+1} $ 44 ± 2 43 1 + 2 $ 43_{-1}^{+2} $ 45 ± 2
θE, ∞, DM1 [″] Einstein radius flat(0,50) 20 . 7 1.3 + 1.1 $ 20.7_{-1.3}^{+1.1} $ 20 . 2 1.3 + 1.4 $ 20.2_{-1.3}^{+1.4} $ 19 . 5 1.2 + 1.8 $ 19.5_{-1.2}^{+1.8} $ 21 . 4 1.9 + 1.6 $ 21.4_{-1.9}^{+1.6} $
E [″] halo strength flat(0,50) 13 ± 2
rc, DM1 [″] core radius flat(0,50) 6 . 5 0.8 + 0.7 $ 6.5_{-0.8}^{+0.7} $ 6 . 4 0.8 + 0.6 $ 6.4_{-0.8}^{+0.6} $ 6 . 1 0.7 + 0.6 $ 6.1_{-0.7}^{+0.6} $ 5 . 5 0.5 + 0.6 $ 5.5_{-0.5}^{+0.6} $ 6.6 ± 0.8
γ radial slope flat(0.,2.) 0.51 ± 0.03
xDM2 [″] x centroid flat(−30,30) 25 5 + 4 $ 25_{-5}^{+4} $ 20 5 + 6 $ 20_{-5}^{+6} $ 21 8 + 6 $ 21_{-8}^{+6} $ 18 3 + 8 $ 18_{-3}^{+8} $ 19 6 + 9 $ 19_{-6}^{+9} $
yDM2 [″] y centroid flat(−30,30) 16 7 + 10 $ -16_{-7}^{+10} $ 19 6 + 7 $ -19_{-6}^{+7} $ 20 7 + 15 $ -20_{-7}^{+15} $ −22 ± 4 20 7 + 10 $ -20_{-7}^{+10} $
qDM2 axis ratio flat(0.2,1) 0 . 38 0.08 + 0.10 $ 0.38_{-0.08}^{+0.10} $ 0 . 50 0.14 + 0.08 $ 0.50_{-0.14}^{+0.08} $ 0 . 35 0.10 + 0.15 $ 0.35_{-0.10}^{+0.15} $ 0 . 45 0.14 + 0.12 $ 0.45_{-0.14}^{+0.12} $ 0 . 50 0.11 + 0.09 $ 0.50_{-0.11}^{+0.09} $
ϕDM2 [°] position angle flat(0,360) 147 5 + 4 $ 147_{-5}^{+4} $ 145 ± 3 148 4 + 5 $ 148_{-4}^{+5} $ 141 ± 4 148 4 + 3 $ 148_{-4}^{+3} $
θE, ∞, DM2 [″] Einstein radius flat(0,50) 20 6 + 7 $ 20_{-6}^{+7} $ 21 5 + 6 $ 21_{-5}^{+6} $ 15 6 + 13 $ 15_{-6}^{+13} $ 23 ± 6 25 6 + 8 $ 25_{-6}^{+8} $
rc, DM2 [″] core radius flat(0,70) 27 7 + 6 $ 27_{-7}^{+6} $ 29 6 + 8 $ 29_{-6}^{+8} $ 32 9 + 11 $ 32_{-9}^{+11} $ 24 ± 5 50 21 + 16 $ 50_{-21}^{+16} $

Mass sheet

κ0 mass sheet flat(−1,1) 0 . 09 0.12 + 0.07 $ 0.09_{-0.12}^{+0.07} $

Notes. Columns 1 and 2 are the parameter and description. Column 3 is the prior on the parameter, where the letter 𝒢 denotes a Gaussian prior, with its center and 1σ width in parentheses. The Gaussian priors on the Einstein radii with a symbol are based on the first version of velocity dispersion measurements from Granata et al. (2025) using an older version of stellar template libraries; the final velocity dispersion measurements change by ≲1 km s−1, which has negligible effect on the modeling results. Columns 4 to 7 list the inferred parameter values of the corresponding mass models indicated in the header line. Parameter values that have no uncertainties are parameters that are fixed with priors listed as ‘exact’. A dashed line in the parameter value indicates that the parameter is not present in the particular mass model. Position angles are measured east of north in degrees.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.