Open Access

Table B.1

Results of the MADCUBA-SLIM fits of the molecules analyzed toward the G31.41 shock, ordered by increasing molecular mass.

Formula Tex (K) N (×1013 cm−2) v (km s−1) FWHM (km s−1) τamax N/NbH2 (×10−10 cm−2) Figure
Detected molecules related with the shock
HCN 440 ± 140 (4 ± 2) × 102 Fig. S 3
HC15N 20 1.3 ± 0.3 94.2 ± 0.4 4.5 ± 0.9 0.056 ± 0.012 1.0 ± 0.5 Fig. S 3
H2CNH 20 17.8 ± 1.5 94.0 ± 0.4 9.0 ± 0.9 0.015 ± 0.003 14 ± 7 Fig. S 7
CH3OH d 20.5 ± 1.8 350 ± 40 94.41 ± 0.07 4.6 ± 0.2 0.32 ± 0.04 280 ± 130 Fig. S 10
9.9 ± 0.9 380 ± 30 93.7 ± 0.3 18.9 ± 1.1 0.52 ± 0.10 310 ± 140
CH3CN 58 ± 3 24.2 ± 1.3 94.30 ± 0.09 8.0 ± 0.3 0.054 ± 0.005 20 ± 9 Fig. S 13
NH2CN 20 0.50 ± 0.05 92.0 ± 0.4 6.5 (9 ± 3) × 10−3 0.30 ± 0.13 Fig. S 14
H2CCO 20 7.1 ± 0.8 93.7 ± 0.3 5.1 ± 0.6 0.019 ± 0.004 6 ± 3 Fig. S 15
HNCO 15.0 ± 1.6 25.9 ± 0.7 92.20 ± 0.12 9.2 ± 0.3 0.074 ± 0.014 21 ± 10 Fig. S 16
CH3CHO 13.3 ± 0.8 20.1 ± 0.4 94.29 ± 0.07 6.51 ± 0.16 0.070 ± 0.008 16 ± 7 2
CS 900 ± 300 (7 ± 4) × 102 Fig. S 17
C36S 20 0.46 ± 0.10 95.8 ± 0.4 4.3 ± 1.0 0.011 ± 0.003 0.4 ± 0.3 Fig. S 17
NH2CHO 16 ± 3 2.63 ± 0.18 93.80 ± 0.19 6.5 0.014 ± 0.007 2.1 ± 1.0 3
HCS+ 20 3.1 ± 0.3 94.95 ± 0.18 3.9 ± 0.4 0.061 ± 0.006 2.5 ± 1.2 Fig. S 18
H2CSc 69 ± 24 130 ± 40 93.64 ± 0.11 9.5 ± 0.3 0.028 ± 0.010 110 ± 60 Fig. S 19
CH3OCH3 22 ± 6 38 ± 8 94.4 ± 0.3 6.5 (9 ± 4) × 10−3 31 ± 15 Fig. S 20
NS 20 24.7 ± 0.6 94.42 ± 0.08 5.71 ± 0.16 0.096 ± 0.007 20 ± 9 Fig. S 21
C2H5OH 23 ± 4 34 ± 8 93.5 ± 0.3 9.7 ± 0.8 (9 ± 3) × 10−3 27 ± 14 Fig. S 22
CH3SH 12 ± 4 12.9 ± 1.6 94.9 ± 0.3 5.9 ± 0.5 0.032 ± 0.013 10 ± 5 4
HC3N 15 ± 3 12 ± 6 Fig. S 23
H13CCCN 20 0.38 ± 0.05 93.9 ± 0.4 4.5 0.011 ± 0.004 0.31 ± 0.15 Fig. S 23
HC13CCN 20 0.37 ± 0.07 93.2 ± 0.4 4.5 ± 0.9 0.011 ± 0.004 0.30 ± 0.15 Fig. S 23
C2H3CN 9.8 ± 1.6 3.2 ± 0.6 93.9 ± 0.3 6.5 0.031 ± 0.011 2.6 ± 1.3 Fig. S 24
CH3OCHO 26 ± 12 13 ± 3 92.7 ± 0.4 6.3 ± 0.9 (3 ± 2) × 10−3 ll ± 6 Fig. S 25
OCS d 20 83 ± 3 95.25 ± 0.08 4.2 ± 0.3 0.125 ± 0.008 70 ± 30 Fig. S 26
30 ± 7 108 ± Il 93.8 ± 0.3 10.3 ± 0.7 0.044 ± 0.011 90 ± 40
HC5N 38 ± 12 1.0 ± 0.4 94.2 ± 0.3 4.4 ± 0.5 (5 ± 3) × 10−3 0.8 ± 0.5 Fig. S 27
Detected molecules associated with the PDR
NH2Dd 20 7.5 ± 0.6 94.90 ± 0.12 3.2 ± 0.3 0.088 ± 0.007 6 ± 3 Fig. S 1
20 2.2 ± 0.5 99.8 ± 0.3 2.4 ± 0.6 0.035 ± 0.007 1.8 ± 0.9
CCH 13 ± 7 92 ± 15 93.96 ± 0.05 2.62 ± 0.13 0.4 ± 0.3 70 ± 40 Fig. S 2
HNC 49 ± 13 40 ± 20 Fig. S 4
HN13C 20 1.23 ± 0.11 94.23 ± 0.12 2.8 ± 0.3 0.090 ± 0.007 1.0 ± 0.5 Fig. S 4
CO (1.5 ± 0.9) × 106 (1.2 ± 0.9) × 106 Fig. S 5
13C18O 20 110 ± 40 94.5 ± 0.4 2.3 ± 0.8 0.013 ± 0.005 90 ± 50 Fig. S 5
N2H+ 20 6.7 ± 1.5 94.4 ± 0.3 2.4 ± 0.7 0.21 ± 0.10 5 ± 3 Fig. S 6
HCO+ 110 ± 60 90 ± 60 Fig. S 8
HC18O+ 20 0.33 ± 0.07 94.8 ± 0.3 2.5 ± 0.8 0.042 ± 0.008 0.27 ± 0.14 Fig. S 8
H2CO 20 140 ± 40 95.3 ± 0.4 3.1 ± 0.9 0.019 ± 0.005 120 ± 60 Fig. S 9
c-C3H2 20 5.0 ± 0.5 93.96 ± 0.11 2.6 ± 0.5 0.089 ± 0.008 4.0 ± 1.9 Fig. S 11
CH3CCH 37 ± 3 86 ± 5 94.58 ± 0.05 3.04 ± 0.11 0.046 ± 0.005 70 ± 30 Fig. S 12
H2CSc 25 ± 4 19 ± 3 94.34 ± 0.05 3.18 ± 0.19 0.095 ± 0.016 15 ± 7 Fig. S 19
Non detected molecules
CH3NH2 20 < 14 94 6.5 < 3 × 10−3 <8 Fig. S 28
CH3NC 20 < 0.08 94 6.5 < 1.8 × 10−3 < 0.05 Fig. S 28
HOCN 20 < 0.12 94 6.5 < 4 × 10−3 < 0.07 Fig. S 28
c-C2H4O 20 < 1.4 94 6.5 < 3 × 10−3 < 0.8 Fig. S 28
t-HCOOH 20 < 1.7 94 6.5 < 3 × 10−3 < 1.0 Fig. S 28
HONO 20 <3 94 6.5 < 4 × 10−3 < 1.5 Fig. S 28
Z-HNCHCN 20 <6 94 6.5 < 3 × 10−3 <3 Fig. S 28
C2H5CN 20 < 0.5 94 6.5 < 1.4 × 10−3 < 0.3 Fig. S 28
CH3NCO 20 < 0.5 94 6.5 < 1.1 × 10−3 < 0.3 Fig. S 28
CH3COCH3 20 < 0.9 94 6.5 < 7 × 10−4 < 0.6 Fig. S 28
C2H5CHO 20 < 1.9 94 6.5 < 5 × 10−4 < 1.1 Fig. S 28
CH3CONH2 20 < 0.4 94 6.5 < 4 × 10−4 < 0.2 Fig. S 28
N-CH3NHCHO 20 <5 94 6.5 < 4 × 10−3 <3 Fig. S 28
HCOCH2OH 20 <3 94 6.5 < 3 × 10−3 < 1.6 Fig. S 28
CH3COOH 20 <2 94 6.5 < 4 × 10−4 < 1.3 Fig. S 28
NH2CH2CH2OH 20 <3 94 6.5 < 4 × 10−3 <2 Fig. S 28
aGg’-((CH2OH)2) 20 <8 94 6.5 < 4 × 10−3 <5 Fig. S 28
gGg’-((CH2OH)2 ) 20 < ll 94 6.5 < 3 × 10−3 <7 Fig. S 28
CH3OCH2OH 20 < 140 94 6.5 < 6 × 10−4 < 80 Fig. S 28
HOCH2C(O)NH2 20 < 1.4 94 6.5 < 1.3 × 10−3 < 0.8 Fig. S 28

Notes. The table is separated into three parts to distinguish molecules: (i) detected and related with shocked gas; (ii) detected in the shocked region but likely associated with extended photo-dominated gas (PDR); and (iii) not detected in the shocked region, for which column density upper limits are provided (marked with <; see Sect. 3.4 for details). For optically thick molecules, we include the optically thin isotopolog that we have used to derive the column density of the main isotopolog (the results of the other isotopologs are presented in Table B.2 instead). The resulting physical parameters, along with their associated uncertainties, are presented. The values of the parameters that were kept fixed are shown without uncertainties. We also present the maximum line opacity of the transitions of each molecule (τmax), and the molecular abundances compared to H2. The transitions of each species used to perform the fits are listed in Table S 1. The isotopic ratios and the N(H2) used are discussed in Sect. 3. aMaximum τ of all the transitions detected for each molecule. b N(H2) = (1.2 ± 0.6) × 1023 cm−2 of the G31.41 shock, more details in Sect. 3.3. c Following the criteria based on the FWHM to distinguish if the molecule arises from the shock or not, we have added the two line components of H2CS in different parts of the table. dThe SLIM fit of the molecule has two components.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.