Table B.1
Results of the MADCUBA-SLIM fits of the molecules analyzed toward the G31.41 shock, ordered by increasing molecular mass.
| Formula | Tex (K) | N (×1013 cm−2) | v (km s−1) | FWHM (km s−1) | τamax | N/NbH2 (×10−10 cm−2) | Figure |
|---|---|---|---|---|---|---|---|
| Detected molecules related with the shock | |||||||
| HCN | 440 ± 140 | (4 ± 2) × 102 | Fig. S 3 | ||||
| HC15N | 20 | 1.3 ± 0.3 | 94.2 ± 0.4 | 4.5 ± 0.9 | 0.056 ± 0.012 | 1.0 ± 0.5 | Fig. S 3 |
| H2CNH | 20 | 17.8 ± 1.5 | 94.0 ± 0.4 | 9.0 ± 0.9 | 0.015 ± 0.003 | 14 ± 7 | Fig. S 7 |
| CH3OH d | 20.5 ± 1.8 | 350 ± 40 | 94.41 ± 0.07 | 4.6 ± 0.2 | 0.32 ± 0.04 | 280 ± 130 | Fig. S 10 |
| 9.9 ± 0.9 | 380 ± 30 | 93.7 ± 0.3 | 18.9 ± 1.1 | 0.52 ± 0.10 | 310 ± 140 | ||
| CH3CN | 58 ± 3 | 24.2 ± 1.3 | 94.30 ± 0.09 | 8.0 ± 0.3 | 0.054 ± 0.005 | 20 ± 9 | Fig. S 13 |
| NH2CN | 20 | 0.50 ± 0.05 | 92.0 ± 0.4 | 6.5 | (9 ± 3) × 10−3 | 0.30 ± 0.13 | Fig. S 14 |
| H2CCO | 20 | 7.1 ± 0.8 | 93.7 ± 0.3 | 5.1 ± 0.6 | 0.019 ± 0.004 | 6 ± 3 | Fig. S 15 |
| HNCO | 15.0 ± 1.6 | 25.9 ± 0.7 | 92.20 ± 0.12 | 9.2 ± 0.3 | 0.074 ± 0.014 | 21 ± 10 | Fig. S 16 |
| CH3CHO | 13.3 ± 0.8 | 20.1 ± 0.4 | 94.29 ± 0.07 | 6.51 ± 0.16 | 0.070 ± 0.008 | 16 ± 7 | 2 |
| CS | 900 ± 300 | (7 ± 4) × 102 | Fig. S 17 | ||||
| C36S | 20 | 0.46 ± 0.10 | 95.8 ± 0.4 | 4.3 ± 1.0 | 0.011 ± 0.003 | 0.4 ± 0.3 | Fig. S 17 |
| NH2CHO | 16 ± 3 | 2.63 ± 0.18 | 93.80 ± 0.19 | 6.5 | 0.014 ± 0.007 | 2.1 ± 1.0 | 3 |
| HCS+ | 20 | 3.1 ± 0.3 | 94.95 ± 0.18 | 3.9 ± 0.4 | 0.061 ± 0.006 | 2.5 ± 1.2 | Fig. S 18 |
| H2CSc | 69 ± 24 | 130 ± 40 | 93.64 ± 0.11 | 9.5 ± 0.3 | 0.028 ± 0.010 | 110 ± 60 | Fig. S 19 |
| CH3OCH3 | 22 ± 6 | 38 ± 8 | 94.4 ± 0.3 | 6.5 | (9 ± 4) × 10−3 | 31 ± 15 | Fig. S 20 |
| NS | 20 | 24.7 ± 0.6 | 94.42 ± 0.08 | 5.71 ± 0.16 | 0.096 ± 0.007 | 20 ± 9 | Fig. S 21 |
| C2H5OH | 23 ± 4 | 34 ± 8 | 93.5 ± 0.3 | 9.7 ± 0.8 | (9 ± 3) × 10−3 | 27 ± 14 | Fig. S 22 |
| CH3SH | 12 ± 4 | 12.9 ± 1.6 | 94.9 ± 0.3 | 5.9 ± 0.5 | 0.032 ± 0.013 | 10 ± 5 | 4 |
| HC3N | 15 ± 3 | 12 ± 6 | Fig. S 23 | ||||
| H13CCCN | 20 | 0.38 ± 0.05 | 93.9 ± 0.4 | 4.5 | 0.011 ± 0.004 | 0.31 ± 0.15 | Fig. S 23 |
| HC13CCN | 20 | 0.37 ± 0.07 | 93.2 ± 0.4 | 4.5 ± 0.9 | 0.011 ± 0.004 | 0.30 ± 0.15 | Fig. S 23 |
| C2H3CN | 9.8 ± 1.6 | 3.2 ± 0.6 | 93.9 ± 0.3 | 6.5 | 0.031 ± 0.011 | 2.6 ± 1.3 | Fig. S 24 |
| CH3OCHO | 26 ± 12 | 13 ± 3 | 92.7 ± 0.4 | 6.3 ± 0.9 | (3 ± 2) × 10−3 | ll ± 6 | Fig. S 25 |
| OCS d | 20 | 83 ± 3 | 95.25 ± 0.08 | 4.2 ± 0.3 | 0.125 ± 0.008 | 70 ± 30 | Fig. S 26 |
| 30 ± 7 | 108 ± Il | 93.8 ± 0.3 | 10.3 ± 0.7 | 0.044 ± 0.011 | 90 ± 40 | ||
| HC5N | 38 ± 12 | 1.0 ± 0.4 | 94.2 ± 0.3 | 4.4 ± 0.5 | (5 ± 3) × 10−3 | 0.8 ± 0.5 | Fig. S 27 |
| Detected molecules associated with the PDR | |||||||
| NH2Dd | 20 | 7.5 ± 0.6 | 94.90 ± 0.12 | 3.2 ± 0.3 | 0.088 ± 0.007 | 6 ± 3 | Fig. S 1 |
| 20 | 2.2 ± 0.5 | 99.8 ± 0.3 | 2.4 ± 0.6 | 0.035 ± 0.007 | 1.8 ± 0.9 | ||
| CCH | 13 ± 7 | 92 ± 15 | 93.96 ± 0.05 | 2.62 ± 0.13 | 0.4 ± 0.3 | 70 ± 40 | Fig. S 2 |
| HNC | 49 ± 13 | 40 ± 20 | Fig. S 4 | ||||
| HN13C | 20 | 1.23 ± 0.11 | 94.23 ± 0.12 | 2.8 ± 0.3 | 0.090 ± 0.007 | 1.0 ± 0.5 | Fig. S 4 |
| CO | (1.5 ± 0.9) × 106 | (1.2 ± 0.9) × 106 | Fig. S 5 | ||||
| 13C18O | 20 | 110 ± 40 | 94.5 ± 0.4 | 2.3 ± 0.8 | 0.013 ± 0.005 | 90 ± 50 | Fig. S 5 |
| N2H+ | 20 | 6.7 ± 1.5 | 94.4 ± 0.3 | 2.4 ± 0.7 | 0.21 ± 0.10 | 5 ± 3 | Fig. S 6 |
| HCO+ | 110 ± 60 | 90 ± 60 | Fig. S 8 | ||||
| HC18O+ | 20 | 0.33 ± 0.07 | 94.8 ± 0.3 | 2.5 ± 0.8 | 0.042 ± 0.008 | 0.27 ± 0.14 | Fig. S 8 |
| H2CO | 20 | 140 ± 40 | 95.3 ± 0.4 | 3.1 ± 0.9 | 0.019 ± 0.005 | 120 ± 60 | Fig. S 9 |
| c-C3H2 | 20 | 5.0 ± 0.5 | 93.96 ± 0.11 | 2.6 ± 0.5 | 0.089 ± 0.008 | 4.0 ± 1.9 | Fig. S 11 |
| CH3CCH | 37 ± 3 | 86 ± 5 | 94.58 ± 0.05 | 3.04 ± 0.11 | 0.046 ± 0.005 | 70 ± 30 | Fig. S 12 |
| H2CSc | 25 ± 4 | 19 ± 3 | 94.34 ± 0.05 | 3.18 ± 0.19 | 0.095 ± 0.016 | 15 ± 7 | Fig. S 19 |
| Non detected molecules | |||||||
| CH3NH2 | 20 | < 14 | 94 | 6.5 | < 3 × 10−3 | <8 | Fig. S 28 |
| CH3NC | 20 | < 0.08 | 94 | 6.5 | < 1.8 × 10−3 | < 0.05 | Fig. S 28 |
| HOCN | 20 | < 0.12 | 94 | 6.5 | < 4 × 10−3 | < 0.07 | Fig. S 28 |
| c-C2H4O | 20 | < 1.4 | 94 | 6.5 | < 3 × 10−3 | < 0.8 | Fig. S 28 |
| t-HCOOH | 20 | < 1.7 | 94 | 6.5 | < 3 × 10−3 | < 1.0 | Fig. S 28 |
| HONO | 20 | <3 | 94 | 6.5 | < 4 × 10−3 | < 1.5 | Fig. S 28 |
| Z-HNCHCN | 20 | <6 | 94 | 6.5 | < 3 × 10−3 | <3 | Fig. S 28 |
| C2H5CN | 20 | < 0.5 | 94 | 6.5 | < 1.4 × 10−3 | < 0.3 | Fig. S 28 |
| CH3NCO | 20 | < 0.5 | 94 | 6.5 | < 1.1 × 10−3 | < 0.3 | Fig. S 28 |
| CH3COCH3 | 20 | < 0.9 | 94 | 6.5 | < 7 × 10−4 | < 0.6 | Fig. S 28 |
| C2H5CHO | 20 | < 1.9 | 94 | 6.5 | < 5 × 10−4 | < 1.1 | Fig. S 28 |
| CH3CONH2 | 20 | < 0.4 | 94 | 6.5 | < 4 × 10−4 | < 0.2 | Fig. S 28 |
| N-CH3NHCHO | 20 | <5 | 94 | 6.5 | < 4 × 10−3 | <3 | Fig. S 28 |
| HCOCH2OH | 20 | <3 | 94 | 6.5 | < 3 × 10−3 | < 1.6 | Fig. S 28 |
| CH3COOH | 20 | <2 | 94 | 6.5 | < 4 × 10−4 | < 1.3 | Fig. S 28 |
| NH2CH2CH2OH | 20 | <3 | 94 | 6.5 | < 4 × 10−3 | <2 | Fig. S 28 |
| aGg’-((CH2OH)2) | 20 | <8 | 94 | 6.5 | < 4 × 10−3 | <5 | Fig. S 28 |
| gGg’-((CH2OH)2 ) | 20 | < ll | 94 | 6.5 | < 3 × 10−3 | <7 | Fig. S 28 |
| CH3OCH2OH | 20 | < 140 | 94 | 6.5 | < 6 × 10−4 | < 80 | Fig. S 28 |
| HOCH2C(O)NH2 | 20 | < 1.4 | 94 | 6.5 | < 1.3 × 10−3 | < 0.8 | Fig. S 28 |
Notes. The table is separated into three parts to distinguish molecules: (i) detected and related with shocked gas; (ii) detected in the shocked region but likely associated with extended photo-dominated gas (PDR); and (iii) not detected in the shocked region, for which column density upper limits are provided (marked with <; see Sect. 3.4 for details). For optically thick molecules, we include the optically thin isotopolog that we have used to derive the column density of the main isotopolog (the results of the other isotopologs are presented in Table B.2 instead). The resulting physical parameters, along with their associated uncertainties, are presented. The values of the parameters that were kept fixed are shown without uncertainties. We also present the maximum line opacity of the transitions of each molecule (τmax), and the molecular abundances compared to H2. The transitions of each species used to perform the fits are listed in Table S 1. The isotopic ratios and the N(H2) used are discussed in Sect. 3. aMaximum τ of all the transitions detected for each molecule. b N(H2) = (1.2 ± 0.6) × 1023 cm−2 of the G31.41 shock, more details in Sect. 3.3. c Following the criteria based on the FWHM to distinguish if the molecule arises from the shock or not, we have added the two line components of H2CS in different parts of the table. dThe SLIM fit of the molecule has two components.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.