Open Access

Table 1

Definitions of functional forms for radial parametric modelling.

Function Surface density profile Parameters
Double power law Σ(r)=[(rRc)αinγ+(rRc)αoutγ]1/γ$\Sigma(r) = \left[\left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{in}} \gamma} + \left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{out}} \gamma}\right]^{-1/\gamma}$ Rc,αin,αout,γ=2$R_{\rm{c}}, \alpha_{\text{in}}, \alpha_{\text{out}}, \gamma=2$
Triple power law Σ(r)=(RinRout)αmid[(rRin)αinγin+(rRin)αmidγin]1/γinΣ(r)=×[(rRout)αmidγout+(rRout)αoutγout]1/γout\makecell[tl]{$\Sigma(r) = \left(\dfrac{R_{\text{in}}}{R_{\text{out}}}\right)^{-\alpha_{\text{mid}}} \left[\left(\dfrac{r}{R_{\text{in}}}\right)^{-\alpha_{\text{in}} \gamma_{\text{in}}} + \left(\dfrac{r}{R_{\text{in}}}\right)^{-\alpha_{\text{mid}} \gamma_{\text{in}}}\right]^{-1/\gamma_{\text{in}}}$ \\[12pt] $\textcolor{white}{\Sigma(r) =} \times \left[\left(\dfrac{r}{R_{\text{out}}}\right)^{-\alpha_{\text{mid}} \gamma_{\text{out}}} + \left(\dfrac{r}{R_{\text{out}}}\right)^{-\alpha_{\text{out}} \gamma_{\text{out}}}\right]^{-1/\gamma_{\text{out}}}$} Rin, Rout, αin, αmid, αout, γin=2, γout=2
Power law + error function Σ(r)=[1erf(Rcr2σinRc)](rRc)αout$\Sigma(r) = \left[1-\text{erf}\left(\dfrac{R_{\rm{c}}-r}{\sqrt{2} \sigma_{\text{in}} R_{\rm{c}}}\right)\right] \left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{out}}}$ Rc, σin, αout
Gaussian Σ(r)=exp[(rR)22σ2]$\Sigma(r) = \exp\left[-\dfrac{(r-R)^2}{2 \sigma^2}\right]$ R, σ
Asymmetric Gaussian Σ(r)={exp[(rRc)22σin2]if r<Rcexp[(rRc)22σout2]if rRc\begin{array}{l} \Sigma(r) = \begin{cases} \exp\left[-\dfrac{(r-R_{\rm{c}})^2}{2 \sigma_{\text{in}}^2}\right] & \text{if } r<R_{\rm{c}}\\ \exp\left[-\dfrac{(r-R_{\rm{c}})^2}{2 \sigma_{\text{out}}^2}\right] & \text{if } r \geq R_{\rm{c}} \end{cases} \end{array} Rc, σin, σout
Double Gaussian Σ(r)=C×exp[(rR1)22σ12]Σ(r)=+(1C)×exp[(rR2)22σ22]\makecell[tl]{ $\Sigma(r) = C \times \exp\left[-\dfrac{(r-R_1)^2}{2 \sigma_1^2}\right]$\\[12pt] $\textcolor{white}{\Sigma(r) =} + (1-C) \times \exp\left[-\dfrac{(r-R_2)^2}{2 \sigma_2^2}\right]$ } R1, R2, σ1, σ2, C
Triple Gaussian Σ(r)=C1×exp[(rR1)22σ12]Σ(r)=+C2×exp[(rR2)22σ22]Σ(r)=+(1C1C2)×exp[(rR3)22σ32]\makecell[tl]{ $\Sigma(r) = C_1 \times \exp\left[-\dfrac{(r-R_1)^2}{2 \sigma_1^2}\right]$ \\[12pt] $\textcolor{white}{\Sigma(r) =} + C_2 \times \exp\left[-\dfrac{(r-R_2)^2}{2 \sigma_2^2}\right]$ \\[12pt] $\textcolor{white}{\Sigma(r) =} + (1-C_1-C_2) \times \exp\left[-\dfrac{(r-R_3)^2}{2 \sigma_3^2}\right]$ } R1, R2, R3, σ1, σ2, σ3, C1, C2
Gaussian + double power law Σ(r)=C1×exp[(rR)22σ2]Σ(r)=+(1C1)×[(rRc)αinγ+(rRc)αoutγ]1/γ\makecell[tl]{ $\Sigma(r) = C_1\times\exp\left[-\dfrac{(r-R)^2}{2 \sigma^2}\right]$ \\[12pt] $\textcolor{white}{\Sigma(r) =} + (1-C_1)\times \left[\left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{in}} \gamma} + \left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{out}} \gamma}\right]^{-1/\gamma}$ } R, σ, C1, Rc, αin, αout, γ=2

Notes. All surface density profiles are multiplied by 10>∑c, the surface density normalisation. We fixed certain parameters at the values noted here to minimise degeneracies; exceptions for specific targets are stated explicitly.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.