Open Access
Table 1
Definitions of functional forms for radial parametric modelling.
| Function | Surface density profile | Parameters |
|---|---|---|
| Double power law | ![]() |
![]() |
| Triple power law | ![]() |
Rin, Rout, αin, αmid, αout, γin=2, γout=2 |
| Power law + error function | ![]() |
Rc, σin, αout |
| Gaussian | ![]() |
R, σ |
| Asymmetric Gaussian | ![]() |
Rc, σin, σout |
| Double Gaussian | ![]() |
R1, R2, σ1, σ2, C |
| Triple Gaussian | ![]() |
R1, R2, R3, σ1, σ2, σ3, C1, C2 |
| Gaussian + double power law | ![]() |
R, σ, C1, Rc, αin, αout, γ=2 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
![$\Sigma(r) = \left[\left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{in}} \gamma} + \left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{out}} \gamma}\right]^{-1/\gamma}$](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq1.png)

![\makecell[tl]{$\Sigma(r) = \left(\dfrac{R_{\text{in}}}{R_{\text{out}}}\right)^{-\alpha_{\text{mid}}} \left[\left(\dfrac{r}{R_{\text{in}}}\right)^{-\alpha_{\text{in}} \gamma_{\text{in}}} + \left(\dfrac{r}{R_{\text{in}}}\right)^{-\alpha_{\text{mid}} \gamma_{\text{in}}}\right]^{-1/\gamma_{\text{in}}}$ \\[12pt] $\textcolor{white}{\Sigma(r) =} \times \left[\left(\dfrac{r}{R_{\text{out}}}\right)^{-\alpha_{\text{mid}} \gamma_{\text{out}}} + \left(\dfrac{r}{R_{\text{out}}}\right)^{-\alpha_{\text{out}} \gamma_{\text{out}}}\right]^{-1/\gamma_{\text{out}}}$}](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq3.png)
![$\Sigma(r) = \left[1-\text{erf}\left(\dfrac{R_{\rm{c}}-r}{\sqrt{2} \sigma_{\text{in}} R_{\rm{c}}}\right)\right] \left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{out}}}$](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq4.png)
![$\Sigma(r) = \exp\left[-\dfrac{(r-R)^2}{2 \sigma^2}\right]$](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq5.png)
![\begin{array}{l} \Sigma(r) = \begin{cases} \exp\left[-\dfrac{(r-R_{\rm{c}})^2}{2 \sigma_{\text{in}}^2}\right] & \text{if } r<R_{\rm{c}}\\ \exp\left[-\dfrac{(r-R_{\rm{c}})^2}{2 \sigma_{\text{out}}^2}\right] & \text{if } r \geq R_{\rm{c}} \end{cases} \end{array}](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq6.png)
![\makecell[tl]{ $\Sigma(r) = C \times \exp\left[-\dfrac{(r-R_1)^2}{2 \sigma_1^2}\right]$\\[12pt] $\textcolor{white}{\Sigma(r) =} + (1-C) \times \exp\left[-\dfrac{(r-R_2)^2}{2 \sigma_2^2}\right]$ }](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq7.png)
![\makecell[tl]{ $\Sigma(r) = C_1 \times \exp\left[-\dfrac{(r-R_1)^2}{2 \sigma_1^2}\right]$ \\[12pt] $\textcolor{white}{\Sigma(r) =} + C_2 \times \exp\left[-\dfrac{(r-R_2)^2}{2 \sigma_2^2}\right]$ \\[12pt] $\textcolor{white}{\Sigma(r) =} + (1-C_1-C_2) \times \exp\left[-\dfrac{(r-R_3)^2}{2 \sigma_3^2}\right]$ }](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq8.png)
![\makecell[tl]{ $\Sigma(r) = C_1\times\exp\left[-\dfrac{(r-R)^2}{2 \sigma^2}\right]$ \\[12pt] $\textcolor{white}{\Sigma(r) =} + (1-C_1)\times \left[\left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{in}} \gamma} + \left(\dfrac{r}{R_{\rm{c}}}\right)^{-\alpha_{\text{out}} \gamma}\right]^{-1/\gamma}$ }](/articles/aa/full_html/2026/01/aa56450-25/aa56450-25-eq9.png)