Open Access

Table 1

Full model A parametrization prescription.

Group Prescription A
Geometry inc, PA, dRA, dDec

Front surface zf=z1(r/1)ψzexp((r/rz)ϕz)${z_f} = {z_1}{\left( {r/1''} \right)^{{\psi _z}}}\exp \left( { - {{\left( {r/{r_z}} \right)}^{{\phi _z}}}} \right)$
Back surface zb=zf${z_b} = - {z_f}$

Keplerian velocity vkep=GMr/(r2+z2)3/2${v_{kep}} = \sqrt {G{M_ * }r/{{\left( {{r^2} + {z^2}} \right)}^{3/2}}}$
Sky velocity vsky(r,z)=vkepcos(θ)sin(|inc|)+vsys${v_{{\rm{sky}}}}(r,z) = {v_{{\rm{kep}}}}\cos (\theta )\sin (|inc|) + {v_{{\rm{sys}}}}$

Brightness temperature T=T10(r/10 au)q$T = {T_{10}}{(r/10\,{\rm{au)}}^q}$
Line width Δυ=2kBT/μmH$\Delta \upsilon = \sqrt {2{k_B}T/\mu {m_H}}$

Optical depth τ=τ10(r/10au)ψτexp((r/rτ)ϕτ)$\tau = {\tau _{10}}{(r/10au)^{{\psi _\tau }}}\exp \left( { - {{\left( {r/{r_\tau }} \right)}^{{\phi _\tau }}}} \right)$
Line profile τv=τexp(((vvsky)/Δv)2)${\tau _v} = \tau \exp \left( { - {{\left( {\left( {v - {v_{sky}}} \right)/{\rm{\Delta }}v} \right)}^2}} \right)$

Front surface brightness Iv,f = Bv(1 − exp(−τv))
Back surface brightness Iv,b = Bv(1 − exp(−τv)) exp(−τv)
Surface brightness Iv = Iv,f + Iv,b

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.