| Issue |
A&A
Volume 701, September 2025
|
|
|---|---|---|
| Article Number | A190 | |
| Number of page(s) | 30 | |
| Section | Planets, planetary systems, and small bodies | |
| DOI | https://doi.org/10.1051/0004-6361/202554856 | |
| Published online | 16 September 2025 | |
ATREIDES
I. Embarking on a trek across the exo-Neptunian landscape with the TOI-421 system
1
Observatoire Astronomique de l’Université de Genève, Chemin Pegasi 51b, 1290 Versoix, Switzerland
2
European Southern Observatory, Alonso de Córdova 3107, Vitacura, Región Metropolitana, Chile
3
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
4
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
5
Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
6
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
7
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
8
Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
9
Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
10
Centro de Astrobiología, CSIC-INTA, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
11
Potsdam University, Institute of Physics and Astronomy, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
12
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
13
International Center for Advanced Studies (ICAS) and ICIFI (CONICET), ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, (1650) Buenos Aires, Argentina
14
Space Research and Planetary Sciences, Physics Institute, University of Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
15
Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
16
Aix Marseille Université, CNRS, CNES, LAM, Marseille, France
17
Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138, USA
18
Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
19
School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
20
Astrobiology Research Unit, Université de Liège, Allée du 6 Août, 19C, 4000 Liège, Belgium
21
Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain
22
Departamento de Astrofísica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
23
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
24
Instituto Tecnológico de Buenos Aires (ITBA), Iguazú 341, Buenos Aires, CABA C1437, Argentina
25
Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain
26
Département de Physique, Institut Trottier de Recherche sur les Exoplanètes, Université de Montréal, Montréal, Québec H3T 1J4, Canada
27
Department of Physics and Astronomy, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
28
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
29
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking RH5 6NT, UK
30
Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
31
Institute for Particle Physics and Astrophysics, ETH Zürich, Wolfgang-Pauli-Strasse 2, 8093 Zürich, Switzerland
32
Oxford Astrophysics, Denys Wilkinson Building, Department of Physics, University of Oxford, OX1 3RH, UK
33
STAR Institute, University of Liège, Allée du 6 août, 19, 4000 Liège (Sart-Tilman), Belgium
34
Max Planck Institute for Astronomy (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
35
School of Physics and Astronomy, China West Normal University, Nanchong 637009, PR China
36
Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Faculty of sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
37
LESIA, Observatoire de Paris, CNRS, Université Paris Diderot, Université Pierre et Marie Curie, Meudon, France
38
Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette, France
39
CFisUC, Departamento de Física, Universidade de Coimbra, 3004516 Coimbra, Portugal
40
IMCCE, UMR 8028 CNRS, Observatoire de Paris, PSL Université, 77 Avenue Denfert-Rochereau, 75014 Paris, France
41
Instituto de Astronomía, Universidad Católica del Norte, Angamos 0610, 1270709, Antofagasta, Chile
★ Corresponding author: vincent.bourrier@unige.ch
Received:
29
March
2025
Accepted:
27
June
2025
The distribution of close-in exoplanets is shaped by a complex interplay between atmospheric and dynamical processes. The Desert, Ridge, and Savanna (respectively a lack, overoccurence, and mild deficit of Neptunes with increasing periods) illustrate the sensitivity of these worlds to such processes, making them ideal targets to disentangle their roles. Determining how many Neptunes are brought close-in by early disk-driven migration (DDM; expected to maintain primordial spin-orbit alignment) or late high-eccentricity tidal migration (HEM; expected to generate large misalignments) is essential to understanding how much atmosphere they lost. In this paper, we propose a unified view of the exo-Neptunian landscape to guide its exploration and speculate that the Ridge is a hot spot for evolutionary processes. Low-density Neptunes would mainly undergo DDM, becoming fully eroded at shorter periods than the Ridge. This is in contrast to denser Neptunes, which would be brought to the Ridge and Desert by HEM. We embark on this exploration via the ATREIDES (Ancestry, Traits, and Relations of Exoplanets Inhabiting the Desert Edges and Savanna) collaboration, which relies on spectroscopic and photometric observations of ~60 close-in Neptunes, their reduction with robust pipelines, and their interpretation through internal structure, atmospheric, and evolutionary models. We carried out a systematic Rossiter-McLaughlin census with VLT/ESPRESSO to measure the distribution of 3D spin-orbit angles, correlate its shape with the system properties (orbit, density, evaporation), and thus relate the fraction of aligned-misaligned Neptunian systems to DDM, HEM, and atmospheric erosion. The first ATREIDES target, TOI-421 c, lies in the Savanna with a neighboring sub-Neptune TOI-421 b. We measured for the first time their 3D spin-orbit angles (ψb = 57−15+11∘; ψc = 44.9−4.1+4.4∘). Together with the eccentricity and possibly large mutual inclination of their orbits, this hints at a chaotic dynamical origin that could result from DDM followed by HEM. Our program will provide the community with a wealth of constraints for formation and evolution models, and we welcome collaborations that will contribute to pushing our understanding of the exo-Neptunian landscape forward.
Key words: instrumentation: photometers / instrumentation: spectrographs / techniques: spectroscopic / planets and satellites: atmospheres / planets and satellites: dynamical evolution and stability / stars: atmospheres
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.