| Issue |
A&A
Volume 702, October 2025
|
|
|---|---|---|
| Article Number | A31 | |
| Number of page(s) | 9 | |
| Section | The Sun and the Heliosphere | |
| DOI | https://doi.org/10.1051/0004-6361/202555771 | |
| Published online | 29 September 2025 | |
Variability in energetic particle observations at strong interplanetary shocks: Multi-spacecraft observations
1
European Space Agency (ESA), European Space Astronomy Centre (ESAC), Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
2
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
3
Lunar and Planetary Laboratory, University of Arizona, Tucson, USA
⋆ Corresponding author: domenico.trotta@esa.int
Received:
2
June
2025
Accepted:
10
August
2025
Context. Interplanetary (IP) shock waves offer an unparalleled opportunity to directly study the elusive mechanisms of particle acceleration that are pervasive in our Universe. Novel spacecraft missions, orbiting poorly-explored regions of the heliosphere, opened a new observational window on particle acceleration at IP shocks that is relevant to space and astrophysical plasmas.
Aims. We address shock variability and its effects on the production of accelerated particles at different energies. We leveraged three different missions that directly observed a strong IP shock in a range of separations that cannot be achieved with a single mission. We linked spatial shock irregularities and evolutionary effects to the observed energetic particle responses in the shock passage at the three different heliospheric vantage points.
Methods. We exploited direct observations of magnetic field, plasma, and energetic particle fluxes from the Wind and ACE missions at 1 AU and from the Solar Orbiter spacecraft. They are well-aligned radially at 0.8 AU. We devised a new technique based on the cross-correlation of energetic particle profiles to quantitatively address the variability in the characteristics of energetic particles at different points in space and time.
Results. We show that ions with different energies respond differently to the shock passage in the range of observer separations 0.02−0.2 AU we explored. The shape and behavior of high-energy (⪆0.5 MeV) particle profiles vary between the 0.8 and 1 AU observations, and we suggest that this is caused by shock-evolution, in which high-energy particles are produced less efficiently at 1 AU than at 0.8. Finally, we show that shock and ambient spatial irregularities that are observed throughout the event modulate the energetic particle responses at different energies.
Key words: acceleration of particles / shock waves / Sun: activity / Sun: heliosphere
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.