| Issue |
A&A
Volume 706, February 2026
|
|
|---|---|---|
| Article Number | A278 | |
| Number of page(s) | 26 | |
| Section | Planets, planetary systems, and small bodies | |
| DOI | https://doi.org/10.1051/0004-6361/202556887 | |
| Published online | 19 February 2026 | |
NIRPS tightens the mass estimate of GJ 3090 b and detects a planet near the stellar rotation period
1
Institut Trottier de recherche sur les exoplanètes, Département de Physique, Université de Montréal,
Montréal,
Québec,
Canada
2
Department of Physics & Astronomy, McMaster University,
1280 Main St W, Hamilton ON, L8S 4L8,
Canada
3
Department of Physics, University of Toronto,
Toronto, ON M5S 3H4,
Canada
4
Observatoire de Genève, Département d’Astronomie, Université de Genève,
Chemin Pegasi 51,
1290
Versoix,
Switzerland
5
Instituto de Astrofísica de Canarias (IAC),
Calle Vía Láctea s/n, 38205 La Laguna,
Tenerife,
Spain
6
Departamento de Astrofísica, Universidad de La Laguna (ULL),
38206 La Laguna,
Tenerife,
Spain
7
Planétarium de Montréal,
Espace pour la Vie, 4801 av. Pierre-de Coubertin, Montréal,
Québec,
Canada
8
Observatoire du Mont-Mégantic,
Québec,
Canada
9
European Southern Observatory (ESO),
Karl-Schwarzschild-Str. 2, 85748 Garching bei München,
Germany
10
University Observatory, Faculty of Physics, Ludwig-MaximiliansUniversität München,
Scheinerstr. 1,
81679
Munich,
Germany
11
European Southern Observatory (ESO),
Av. Alonso de Cordova 3107, Casilla
19001,
Santiago de Chile,
Chile
12
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto,
CAUP, Rua das Estrelas,
4150-762
Porto,
Portugal
13
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto,
Portugal
14
Department of Earth, Planetary, and Space Sciences, University of California,
Los Angeles, CA
90095,
USA
15
Univ. Grenoble Alpes, CNRS,
IPAG,
38000
Grenoble,
France
16
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário,
Natal, RN
59072-970,
Brazil
17
Department of Physics, McGill University,
3600 rue University, Montréal, QC H3A 2T8,
Canada
18
Department of Earth & Planetary Sciences, McGill University,
3450 rue University, Montréal, QC H3A 0E8,
Canada
19
Departamento de Física, Universidade Federal do Ceará,
Caixa Postal 6030, Campus do Pici,
Fortaleza,
Brazil
20
Centro de Astrobiología (CAB), CSIC-INTA,
Camino Bajo del Castillo s/n,
28692
Villanueva de la Cañada (Madrid),
Spain
21
Centre Vie dans l’Univers, Faculté des sciences de l’Université de Genève,
Quai Ernest-Ansermet 30,
1205
Geneva,
Switzerland
22
Space Research and Planetary Sciences, Physics Institute, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
23
Consejo Superior de Investigaciones Científicas (CSIC),
28006
Madrid,
Spain
24
Bishop’s Univeristy, Dept of Physics and Astronomy,
Johnson-104E, 2600 College Street, Sherbrooke, QC J1M 1Z7,
Canada
25
Department of Physics, Engineering Physics, and Astronomy, Queen’s University,
99 University Avenue, Kingston, ON K7L 3N6,
Canada
26
Department of Physics and Space Science, Royal Military College of Canada,
13 General Crerar Cres., Kingston, ON K7P 2M3,
Canada
27
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa,
Campo Grande,
1749-016
Lisboa,
Portugal
28
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa,
Edifício C8,
1749-016
Lisboa,
Portugal
29
Centre of Optics, Photonics and Lasers, Université Laval,
Québec,
Canada
30
Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada,
Canada
31
Aix Marseille Univ,
CNRS, CNES, LAM, Marseille,
France
32
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
33
Center for astrophysics | Harvard & Smithsonian,
60 Garden Street, Cambridge,
MA
02138,
USA
34
NASA Exoplanet Science Institute, IPAC, California Institute of Technology,
Pasadena, CA
91125,
USA
35
George Mason University,
4400 University Drive, Fairfax,
VA
22030,
USA
36
Division of Astrophysics, Department of Physics, Lund University,
Box 118,
22100
Lund,
Sweden
37
SETI Institute, Mountain View,
CA 94043, USA; NASA Ames Research Center, Moffett Field,
CA
94035,
USA
38
York University,
4700 Keele St, North York, ON M3J 1P3,
Canada
39
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg,
Germany
40
University of British Columbia,
2329 West Mall, Vancouver, BC, Canada, V6T 1Z4,
Canada
41
Western University, Department of Physics & Astronomy and Institute for Earth and Space Exploration,
1151 Richmond Street, London, ON N6A 3K7,
Canada
42
Light Bridges S.L., Observatorio del Teide, Carretera del Observatorio,
s/n Guimar,
38500
Tenerife, Canarias,
Spain
43
Department of Physics, The University of Warwick,
Gibbet Hill Road, Coventry CV4 7AL,
UK
44
Hamburger Sternwarte,
Gojenbergsweg 112,
21029
Hamburg,
Germany
45
Subaru Telescope, National Astronomical Observatory of Japan (NAOJ),
650 N Aohoku Place, Hilo, HI
96720,
USA
46
Department of Astronomy & Astrophysics, University of Chicago,
5640 South Ellis Avenue,
Chicago,
IL 60637,
USA
47
Laboratoire Lagrange, Observatoire de la Côte d’Azur,
CNRS, Université Côte d’Azur, Nice,
France
★ Corresponding author: This email address is being protected from spambots. You need JavaScript enabled to view it.
Received:
16
August
2025
Accepted:
15
December
2025
We present an updated characterization of the planetary system orbiting the nearby M2 dwarf GJ 3090 (TOI-177; d=22 pc), based on new high-precision radial velocity (RV) observations from NIRPS and HARPS. With an orbital period of 2.85 d, the transiting sub-Neptune GJ 3090 b has a mass we refine to 4.52 ± 0.47 M⊕, which, combined with our derived radius of 2.18 ± 0.06 R⊕, yields a density of 2.40−0.30+0.33 g∉cm−3. The combined interior structure and atmospheric constraints indicate that GJ 3090 b is a compelling water-world candidate, with a volatile-rich envelope in which water likely represents a significant fraction. We also confirm the presence of a second planet, GJ 3090 c, a sub-Neptune with a 15.9 d orbit and a minimum mass of 10.0 ± 1.3 M⊕, which does not transit. Despite its proximity to the star’s 18 d rotation period, our joint analysis using a multidimensional Gaussian process (GP) model that incorporates TESS photometry and differential stellar temperature measurements distinguishes this planetary signal from activity-induced variability. In addition, we place new constraints on a non-transiting planet candidate with a period of 12.7 d, suggested in earlier RV analyses. This candidate remains a compelling target for future monitoring. These results highlight the crucial role of multidimensional GP modelling in disentangling planetary signals from stellar activity, enabling the detection of a planet near the stellar rotation period that could have remained undetected with traditional approaches.
Key words: instrumentation: spectrographs / planets and satellites: detection / planets and satellites: dynamical evolution and stability / planets and satellites: fundamental parameters / planet-star interactions
© The Authors 2026
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. This email address is being protected from spambots. You need JavaScript enabled to view it. to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.