Open Access

Table 1.

Hyperparameters and model performance for different machine learning algorithms.

Algorithm Hyperparameters AGN non-AGN
precision recall F1 score precision recall F1 score
SVC C = 1.0,  kernel = ′rbf′, 0.976 0.718 0.827 0.875 0.991 0.929
gamma = ′scale
MLP solver = ′adam′, alpha = 0.0001, 0.959 0.829 0.890 0.920 0.982 0.950
hidden_layer_sizes = (100, )
RF n_estimators = 100,  max_features = ′sqrt′, 0.986 0.847 0.911 0.928 0.994 0.960
max_samples = None,  min_samples_split = 2,
bootstrap = True,  max_leaf_nodes = None,
max_depth = None
AdaBoost n_estimators = 50,  learning_rate = 1.0, 0.947 0.847 0.894 0.927 0.976 0.951
estimator = None
HGBT max_iter = 100, max_leaf_nodes = 31, 0.973 0.853 0.909 0.931 0.988 0.959
max_depth = None, min_samples_leaf = 20,
max_bins = 255, l2_refularization = 0.0,
early_stopping = ′auto
CatBoost (default) iterations = 1000 0.974 0.865 0.916 0.936 0.988 0.961
learning_rate = 0.01108,  depth = 6
CatBoost (optimal) iterations = 184 (10, 2000)* 0.981 0.888 0.932 0.946 0.991 0.968
learning_rate = 0.317 (0.001, 1)*,
depth = 6 (1, 16)*

Notes. The lower and upper limits for hyperparameter tuning are presented in brackets.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.