Open Access

Table C.1.

Gamma-ray bursts with measurements of all fireball parameters.

GRB p n/A* ϵe ϵB θJ Ek, iso Refs.
​​(cm−3) / (5×1011 g cm−1)​​ (degree) (1052 erg)
970508(1) 2.12 0.008 + 0.03 $ ^{+0.03}_{-0.008} $ 0.20 0.02 + 0.01 $ ^{+0.01}_{-0.02} $ (n) 0.342 0.01 + 0.09 $ ^{+0.09}_{-0.01} $ 0.25 0.02 + 0.006 $ ^{+0.006}_{-0.02} $ 48 1.6 + 2.0 $ ^{+2.0}_{-1.6} $ 3.7 0.1 + 0.1 $ ^{+0.1}_{-0.1} $ (Ek, isoνc = νm) A
2.39 0.12 + 0.10 $ ^{+0.10}_{-0.12} $ 0.63 0.50 + 4.37 $ ^{+4.37}_{-0.50} $ (n) 0.38 0.19 + 0.30 $ ^{+0.30}_{-0.19} $ 0.0032 0.0030 + 0.0468 $ ^{+0.0468}_{-0.0030} $ 42 10 + 30 $ ^{+30}_{-10} $ 3.4 2.6 + 3.0 $ ^{+3.0}_{-2.6} $ (Ek, isoνc = νm) B
2.2 0.3 (A*) 0.2 0.1 0.3 C
980703 3.08 7×10−4 (n) 0.075 4.6×10−4 13.4 290 D
2.54 27.6 (n) 0.27 1.8×10−3 13.4 11.8 (Ek, isoνc = νm) E(2)
2.11 1.42 (A*) 0.69 2.8×10−2 17.8 0.66 (Ek, isoνc = νm) E(2)
2.05 0.09 + 0.09 $ ^{+0.09}_{-0.09} $ 0.38 0.21 + 0.43 $ ^{+0.43}_{-0.21} $ (n) 0.93 0.24 + 0.33 $ ^{+0.33}_{-0.24} $ 0.13 0.06 + 0.19 $ ^{+0.19}_{-0.06} $ 11.4 2.4 + 2.4 $ ^{+2.4}_{-2.4} $ 0.95 0.31 + 0.53 $ ^{+0.53}_{-0.31} $ (Ek, isoνc = νm) B
000926 2.40 0.02 + 0.01 $ ^{+0.01}_{-0.02} $ 22±5 (n) 0.10±0.02 6.5 1.1 + 1.5 × 10 2 $ ^{+1.5}_{-1.1} \times10^{-2} $ 8.1 0.6 + 0.5 $ ^{+0.5}_{-0.6} $ 0.1 (Ek, iso sr−1) F, G
2.43±0.06 27±3 (n) 0.30±0.05 0.8±0.3 × 10−2 7.8±0.2 18±2 H
2.79 0.04 + 0.05 $ ^{+0.05}_{-0.04} $ 16±3 (n) 0.15±0.01 2.2 0.6 + 0.5 × 10 2 $ ^{+0.5}_{-0.6} \times10^{-2} $ 9.3 0.2 + 0.4 $ ^{+0.4}_{-0.2} $ 15 (Ek, isoνc = νm) I

030329(3) 2.12±0.05 8.6 5.0 + 12.0 $ ^{+12.0}_{-5.0} $ (n) 0.56 0.5 + 0.4 $ ^{+0.4}_{-0.5} $ 4.0 1.8 + 1.9 $ ^{+1.9}_{-1.8} $ ×10−4 6.2 0.03 + 0.02 $ ^{+0.02}_{-0.03} $ 0.14 0.08 + 0.14 $ ^{+0.14}_{-0.08} $ J
050904 2.14 680 (n) 0.02 0.015 8 88 K
060418 1.97 0.04 + 0.02 $ ^{+0.02}_{-0.04} $ 0.35±0.12 (A*) 0.06 0.02 + 0.01 $ ^{+0.01}_{-0.02} $ 0.15 0.01 + 0.14 $ ^{+0.14}_{-0.01} $ 22.5 2.5 + 0.9 $ ^{+0.9}_{-2.5} $ 0.12 0.01 + 0.03 $ ^{+0.03}_{-0.01} $ L
090323(4) 2.71±0.02 0.10±0.01 (A*) 0.07±0.005 0.0089 0.0018 + 0.0007 $ ^{+0.0007}_{-0.0018} $ 2.8 0.1 + 0.4 $ ^{+0.4}_{-0.1} $ 116 9 + 13 $ ^{+13}_{-9} $ M
090328(5) 2.81 0.07 + 0.14 $ ^{+0.14}_{-0.07} $ 0.33±0.05 (A*) 0.11 0.01 + 0.06 $ ^{+0.06}_{-0.01} $ 0.0019 0.0008 + 0.0004 $ ^{+0.0004}_{-0.0008} $ 4.2 0.8 + 1.3 $ ^{+1.3}_{-0.8} $ 82 18 + 28 $ ^{+28}_{-18} $ M
100418 2.22±0.04 2.2±0.8 (A*) 0.34±0.08 0.14±0.04 12±6 1.6±0.1 this work​​
110715A 2.10±0.02 11±5 (A*) 0.79±0.06 (1.6±0.2)×10−3 9.7±0.9 12±2 this work​​
121024A 1.73±0.03 1.4 1.4 + 4.0 $ ^{+4.0}_{-1.4} $ (A*) 0.05 0.02 + 0.06 $ ^{+0.06}_{-0.02} $ 0.02 0.01 + 0.02 $ ^{+0.02}_{-0.01} $ 18 1 + 4 $ ^{+4}_{-1} $ 0.15 0.03 + 0.07 $ ^{+0.07}_{-0.03} $ N
130418A 2.32±0.14 47±14 (A*) 0.40±0.08 (7.1±1.9)×10−5 2.6±0.4 0.77±0.05 this work​​
140304A 2.59 0.026 (A*) 0.025 0.059 1.13 490 O
140311A(6) 2.08 0.01 + 0.01 $ ^{+0.01}_{-0.01} $ 11.1 3.7 + 9.1 $ ^{+9.1}_{-3.7} $ (n) 0.60±0.10 0.22 0.14 + 0.23 $ ^{+0.23}_{-0.14} $ 4.1±0.3 8.7 1.5 + 2.5 $ ^{+2.5}_{-1.5} $ P
2.07 0.02 + 0.03 $ ^{+0.03}_{-0.02} $ 0.29 0.10 + 0.20 $ ^{+0.20}_{-0.10} $ (A*) 0.49 0.15 0.20 $ ^{0.20}_{0.15} $ 0.097 0.078 + 0.202 $ ^{+0.202}_{-0.078} $ 2.9±0.2 12.5 3.0 + 8.6 $ ^{+8.6}_{-3.0} $ P
161219B 2.079 0.006 0.009 $ ^{0.009}_{0.006} $ 3.2 1.2 + 1.4 × 10 4 $ ^{+1.4}_{-1.2} \times10^{-4} $ (n) 0.89 0.07 0.05 $ ^{0.05}_{0.07} $ 5.8 3.0 + 5.4 × 10 2 $ ^{+5.4}_{-3.0} \times10^{-2} $ 13.5 0.46 0.09 0.14 $ ^{0.14}_{0.09} $ Q
181201A 2.11±0.01 0.022 0.006 + 0.015 $ ^{+0.015}_{-0.006} $ (A*) 0.41 0.14 + 0.13 $ ^{+0.13}_{-0.14} $ 6.3 5.3 + 10.3 × 10 3 $ ^{+10.3}_{-5.3} \times10^{-3} $ 25.7 7.9 + 9.0 $ ^{+9.0}_{-7.9} $ R

Notes. (A) Yost et al. (2003); (B) Aksulu et al. (2020), assumed ISM profile; their values have been adapted to be consistent with the usual assumption of 100% electrons being accelerated; (C) Chevalier & Li (2000), no errors provided; (D) Panaitescu & Kumar (2001); (E) Frail et al. (2003), no errors provided; (F) Panaitescu & Kumar (2002); (G) Panaitescu (2005); (H) Harrison et al. (2001); (I) Yost (2004), Yost et al. (2003); (J) Resmi et al. (2005); (K) Frail et al. (2006), no errors provided; (L) Cenko et al. (2010); (M) Cenko et al. (2011); (N) Varela et al. (2016) (O) Laskar et al. (2018b); (P) Laskar et al. (2018a); (Q) Laskar et al. (2018c); (R) Laskar et al. (2019). (1) The Panaitescu & Kumar (2002) modelling results hinge on the interpretation of the sudden re-brightening as an observer being initially outside the jet, and the related reddening as νc-passage, compared to the more canonical interpretation in terms of a late shell-collision (Vlasis et al. 2011). Similarly, also none of the other afterglow modelling attempts cover the clean afterglow (e.g. Wijers & Galama 1999; Granot et al. 1999; Frail et al. 2000). Chevalier & Li (2000) find consistency with a wind environment when fitting just the radio data and the R-band flux normalisation, but fix p. (2) ISM and wind environment models explain the data equally well; Frail et al. (2003) prefer the ISM model due to the lower ϵe. (3) The values given are for the narrow jet of the two-component jet model; the wider jet explains the data at > 1.5 days post-burst, and carries substantially more energy. (4) The wind interpretation is consistent with McBreen et al. (2010), though they derive θJ< 1.​​°1, and did not constrain the microphysical parameters. Lemoine et al. (2013) assume the > 100 MeV emission to be synchrotron, ignore spectral slopes, and use a two-zone model with decaying micro-turbulence to infer the fireball parameters, thus going substantially beyond the standard model. (5) McBreen et al. (2010) noted that modest host extinction of order 0.2 mag is consistent with the GROND data and reduces p to ≈2.4; otherwise consistent jet angle and energetics, but again no microphysical parameters. Lemoine et al. (2013) assume the > 100 MeV emission to be synchrotron, ignore spectral slopes, and use a two-zone model with decaying micro-turbulence to infer the fireball parameters, thus going substantially beyond the standard model. (6) Laskar et al. (2018a) prefer the ISM solution with the argument that the wind solution overpredicts the early radio data. However, the wind solution fits the X-rays much better, making it a similarly viable option in our view.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.