Open Access

Table 2

Comparison of named entity detection across different models.

Named entity DeepSeek-V3 ERNIE-4.5 ERNIE-4 GPT-4o Qwen2.5-32B Qwen3-32B
Acc. Prec. Cov. Acc. Prec. Cov. Acc. Prec. Cov. Acc. Prec. Cov. Acc. Prec. Cov. Acc. Prec. Cov.
ATel alert fields
Transient Name 0.759 0.753 1.000 0.759 0.763 0.986 0.759 0.760 0.986 0.785 0.812 0.944 0.646 0.750 0.833 0.810 0.819 0.972
Transient RA 0.949 0.880 0.960 0.937 0.955 0.840 0.759 0.538 0.960 0.962 1.000 0.880 0.924 0.952 0.800 0.949 0.955 0.880
Transient Dec 0.886 0.895 0.720 0.873 0.842 0.720 0.696 0.444 0.840 0.899 0.895 0.760 0.873 0.941 0.640 0.886 1.000 0.640
Transient Uncertainty 0.924 0.143 1.000 0.937 0.167 1.000 0.924 0.143 1.000 0.924 0.250 1.000 0.911 0.125 1.000 0.924 0.143 1.000
Telescope 0.671 0.667 0.987 0.709 0.707 0.987 0.633 0.623 1.000 0.696 0.726 0.947 0.544 0.635 0.827 0.734 0.730 0.987
Transient Type 0.671 0.658 1.000 0.608 0.629 0.929 0.595 0.581 0.986 0.722 0.721 0.957 0.595 0.694 0.814 0.671 0.667 0.957
Uncertainty Confidence 0.987 0.750 1.000 0.962 0.500 0.333 0.987 1.000 0.667 0.975 0.667 0.667 0.975 0.667 0.667 0.975 0.667 0.667
Average (ATel) 0.835 0.678 0.952 0.826 0.652 0.828 0.765 0.584 0.920 0.852 0.724 0.879 0.781 0.681 0.797 0.850 0.712 0.872
GCN circular fields
Source Type 0.767 0.775 0.989 0.689 0.816 0.844 0.667 0.682 0.978 0.711 0.744 0.956 0.767 0.873 0.878 0.733 0.835 0.878
Source Name 0.878 0.940 0.933 0.856 0.939 0.911 0.889 0.930 0.956 0.878 0.888 0.989 0.900 0.976 0.922 0.889 0.952 0.933
RA 0.967 0.897 1.000 0.922 1.000 0.750 0.933 0.806 1.000 0.989 0.964 1.000 0.967 0.900 1.000 0.933 0.957 0.821
Dec 0.956 0.862 1.000 0.911 0.952 0.750 0.922 0.800 0.964 0.978 0.929 1.000 0.944 0.833 1.000 0.922 0.913 0.821
Location Error 0.800 0.553 0.964 0.800 0.568 0.929 0.767 0.500 1.000 0.833 0.605 1.000 0.767 0.524 0.964 0.767 0.529 0.821
Telescope 0.644 0.644 1.000 0.700 0.724 0.967 0.689 0.697 0.989 0.700 0.708 0.989 0.589 0.602 0.978 0.611 0.625 0.978
Average (GCN-Circular) 0.835 0.779 0.981 0.813 0.833 0.858 0.811 0.736 0.981 0.848 0.806 0.989 0.822 0.785 0.957 0.809 0.802 0.875

Notes. Acc. = Accuracy; Prec. = Precision; Cov. = Coverage. Accuracy refers to the fraction of exactly matched fields over all annotated ones. Precision represents the proportion of correct predictions among all predictions made by the model. Coverage indicates the fraction of required fields that the model successfully extracted.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.