Open Access

Table 3.

Chosen models for the baryonic correction to the power spectrum log S (Eq. (2)) as a function of wavenumber k, redshift z and the cosmological and hydrodynamical parameters outlined in Tables 1 and 2.

Model Fit for log P(k, z, θ)
Astrid α 1 k ( α 2 k ) α 3 ( α 4 z ) ( α 5 z α 6 2 z ) ( α 7 + α 8 k + k 2 ) + ( α 9 k 1 + e α 10 k ) e α 11 z $ \frac{ \alpha_1 k \left(\alpha_{2} k\right)^{\alpha_{3}} \left(\alpha_{4} - z\right)}{\left(\alpha_{5} z - \alpha_{6}^{- 2 z}\right) \left(\alpha_{7} + \alpha_{8} k + k^{2}\right)} + \left(\alpha_{9} k - 1 + e^{- \alpha_{10} k}\right) e^{- \alpha_{11} z} $
α 1 = 7.9 A SN 2 Ω m $ \alpha_1 = 7.9 \frac{A_{\mathrm{SN2}}}{\Omega_{\mathrm{m}}} $, α2 = 0.0014, α3 = 0.937ASN2,
α4 = 1.622AAGN2 + 0.849ASN1 + 5.092ASN22(0.23AAGN1AAGN2−0.71ASN1+3.107σ8)
α5 = 0.78, α6 = 0.677, α7 = AAGN2(19.756Ωm+2.8478)
α8 = 1.7347AAGN2 + 11.389Ωm + 1.642 α9 = 0.0224, α10 = 0.029, α11 = 0.063

IllustrisTNG α 1 α 2 α 3 k α 4 z k ( 1 + α 5 ( α 6 k + α 7 z ) ) + α 8 e α 9 e α 10 z k $ - \alpha_{1} \alpha_{2}^{- \alpha_{3} k - \alpha_{4} z} k \left(1 + \alpha_{5} \left(- \alpha_{6} k + \alpha_{7}^{z}\right)\right) + \alpha_{8} e^{- \frac{\alpha_{9} e^{\alpha_{10} z}}{k}} $
α 1 = 0.0109 A SN 2 Ω m , α 2 = 3592.322 Ω m , α 3 = 0.0087 , α 4 = 0.059 $ \alpha_{1} = 0.0109 \frac{A_{\mathrm{SN2}}}{\Omega_{\mathrm{m}}}, \quad \alpha_{2} = 3592.322 \Omega_{\mathrm{m}}, \quad \alpha_{3} = 0.0087, \quad \alpha_{4} = 0.059 $,
α 5 = 0.9007 A AGN 2 A SN 2 0.5901 A SN 1 A SN 2 1.5576 + 2.6846 σ 8 A SN 2 $ \alpha_{5} = 0.9007 \frac{A_{\mathrm{AGN2}}}{A_{\mathrm{SN2}}} - 0.5901 \frac{A_{\mathrm{SN1}}}{A_{\mathrm{SN2}}} - 1.5576 + 2.6846 \frac{\sigma_8}{A_{\mathrm{SN2}}} $,
α6 = 0.048,  α7 = (0.3Ωm)0.193,  α8 = 0.022,  α9 = 0.021,  α10 = 0.797

SIMBA α 1 k ( k + α 2 ) ( ( α 3 k ) α 4 z + α 5 z ) ( k α 6 + α 7 z + α 8 ) + α 9 e α 10 e α 11 z k 2 z $ - \frac{ \alpha_{1} k \left(k + \alpha_{2}\right)}{\left( \left(\alpha_{3} k\right)^{\alpha_{4} z} + \alpha_{5} z\right) \left( k^{\alpha_{6}} + \alpha_{7} z + \alpha_{8}\right)} + \alpha_{9} e^{- \frac{\alpha_{10} e^{- \alpha_{11} z}}{k} - 2 z} $
α 1 = 0.00133 Ω m 2 , α 2 = Ω m ( 25.727 A AGN 1 + 153.382 A AGN 2 70.6363 A SN 1 + 260.812 σ 8 ) $ \alpha_{1} = \frac{0.00133}{\Omega_{\mathrm{m}}^{2}}, \quad \alpha_{2} = \Omega_{\mathrm{m}} \left(25.727 A_{\mathrm{AGN1}} + 153.382 A_{\mathrm{AGN2}} - 70.6363 A_{\mathrm{SN1}} + 260.812 \sigma_{8}\right) $,
α3 = 0.0553,  α4 = 0.79055,  α5 = 0.6024,  α6 = 1.594,  α7 = 16.01,
α8 = 12.0685(1.0047ASN2)0.6788ASN1,  α9 = 4.4661,  α10 = 114.529,  α11 = 1.21

Swift-EAGLE α 1 α 2 k + α 3 k + α 4 z ( α 5 k + α 6 z + α 7 k z + k 2 α 8 k + α 9 + α 10 k + α 11 α 12 z + α 13 + k + α 14 ) + α 15 e α 16 e z k e α 17 z $ \alpha_{1}^{\frac{\alpha_{2}}{k} + \alpha_{3} k + \alpha_{4} z} \left(- \alpha_{5} k + \alpha_{6} z + \frac{\alpha_{7} k z + k^{2}}{\alpha_{8} k + \alpha_{9}} + \frac{\alpha_{10} k + \alpha_{11}}{\alpha_{12} z + \alpha_{13} + k} + \alpha_{14}\right) + \alpha_{15} e^{- \frac{\alpha_{16} e^{- z}}{k} - e^{\alpha_{17} z}} $
α 1 = 0.272 Ω m , α 2 = 0.22 , α 3 = 0.0168 , α 4 = 0.074 , α 5 = 0.0204 Ω m 1.625 , α 6 = 0.004 Ω m 1.625 $ \alpha_{1} = 0.272 \Omega_{\mathrm{m}}, \quad \alpha_{2} = 0.22, \quad \alpha_{3} = 0.0168, \quad \alpha_{4} = 0.074, \quad \alpha_{5} = \frac{0.0204}{\Omega_{\mathrm{m}}^{1.625}}, \quad \alpha_{6} = \frac{0.004}{\Omega_{\mathrm{m}}^{1.625}} $,
α 7 = 1.1166 , α 8 = 54.3014 Ω m 1.625 , α 9 = 0.12055 Ω m 1.625 ( 4822.2 A SN 1 + 8228.9 Ω m ) $ \alpha_{7} = 1.1166, \quad \alpha_{8} = 54.3014 \Omega_{\mathrm{m}}^{1.625}, \quad \alpha_{9} = 0.12055 \Omega_{\mathrm{m}}^{1.625} \left(4822.2 A_{\mathrm{SN1}} + 8228.9 \Omega_{\mathrm{m}}\right) $,
α 10 = 0.2588 A AGN 1 + 6.13845 A SN 1 Ω m 1.625 ( 6.528 A AGN 2 + 12.855 A SN 1 ) , α 11 = ( 0.9788 0.1659 A SN 1 ) ( 0.3745 A AGN 1 + 8.877 A SN 1 ) Ω m 1.625 ( 6.528 A AGN 2 + 12.855 A SN 1 ) , α 12 = 9.2437 $ \alpha_{10} = \frac{- 0.2588 A_{\mathrm{AGN1}} + 6.13845 A_{\mathrm{SN1}}}{\Omega_{m}^{1.625} \left(6.528 A_{\mathrm{AGN2}} + 12.855 A_{\mathrm{SN1}}\right)}, \quad \alpha_{11} = \frac{\left(0.9788 - 0.1659 A_{\mathrm{SN1}}\right) \left(- 0.3745 A_{\mathrm{AGN1}} + 8.877 A_{\mathrm{SN1}}\right)}{\Omega_{\mathrm{m}}^{1.625} \left(6.528 A_{\mathrm{AGN2}} + 12.855 A_{\mathrm{SN1}}\right)}, \quad \alpha_{12} = 9.2437 $,
α 13 = 9.2965 A SN 2 + 18.4 , α 14 = 0.034 Ω m 0.02 σ 8 Ω m 1.625 , α 15 = 2.287 , α 16 = 130.0 , α 17 = 0.565 $ \alpha_{13} = 9.2965 A_{\mathrm{SN2}} + 18.4, \quad \alpha_{14} = \frac{0.034 \Omega_{\mathrm{m}} - 0.02 \sigma_{8}}{\Omega_{\mathrm{m}}^{1.625}}, \quad \alpha_{15} = 2.287, \quad \alpha_{16} = 130.0, \quad \alpha_{17} = 0.565 $,

Baryonification α1α2α3zk(α4−(α5k)α6)(α7k+α8(α9+α10z)α11)
α1 = 2.4663(5.823Ωb)3.23Ωm,  α2 = 5.823Ωb,  α3 = 0.4355,
α4 = 0.0495log10(M1), α5 = 0.2479,  α6 = −0.27log10(η),
α7 = 0.0015log10(Minn)+0.0176log10(θinn)−0.0015(3.9144σ8)0.2058log10(M1),
α8 = 0.016log10(Mc), α9 = 0.0706log10(Mc), α10 = 0.0383,  α11 = −6.5log10(β)−6.5

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.