Open Access

Table B.1.

Metrics, χ2 per degree of freedom (χ2/dof) and AIC, of the various CDF fits to the empirical CCP data (Figure 2).

CDF Equation f30 > 0 f100 > 0 f800 > 3 ⋅ 103 cm−2

χ2/dof AIC χ2/dof AIC χ2/dof AIC
Lognormal 1 2 [ 1 + erf ( ln x μ σ 2 ) ] $ \frac{1}{2}\left[1 + {erf}\left(\frac{\ln x - \mu}{\sigma\sqrt{2}}\right)\right] $ 0.28 -6.17 0.26 -6.57 0.33 -5.15
Exponential 1 − eλx 0.79 -0.49 0.27 -7.00 0.81 -0.39
Normal 1 2 [ 1 + erf ( x μ σ 2 ) ] $ \frac{1}{2}\left[1 + {erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right)\right] $ 16.21 18.28 12.99 16.95 16.92 18.54
Weibull 1 − e−(x/μ)σ 0.69 -0.69 0.33 -5.11 1.00 1.58
Pareto { 1 ( x m x ) α , x x m 0, x< x m $ \begin{cases} 1 - \left(\frac{x_m}{x}\right)^\alpha, & x \ge x_m \\ 0, & x < x_m \end{cases} $ 5.41 11.70 6.26 12.57 5.46 11.75
Gamma γ ( μ , x σ ) $ \gamma\left(\mu, \frac{x}{\sigma}\right) $ 0.74 -0.25 0.33 -5.04 0.99 1.52
Gumbel exp(−e−(x − μ)/σ) 10.39 15.61 9.29 14.94 11.55 16.25
Generalized Logistic 1 1 + e ( x μ ) / σ $ \frac{1}{1 + e^{-(x - \mu)/\sigma}} $ 17.49 18.74 15.34 17.95 18.24 18.99
Log Exponential 1 − eλlnx 38.03 22.74 28.33 20.97 15.26 17.26
Log Pareto { 1 e α(lnxln x m ) , x x m 0, x< x m $ \begin{cases} 1 - e^{-\alpha(\ln x - \ln x_m)}, & x \ge x_m \\ 0, & x < x_m \end{cases} $ 45.53 24.48 27.19 21.38 5.46 11.75
Log Gumbel exp(−e−(lnx − μ)/σ) 0.83 0.48 1.16 2.48 0.82 0.40

Notes. SPEs with the fluences f30 > 0, f100 > 0, and f800 > 3 ⋅ 103 cm−2 are demonstrated. Most CDFs have two fitting parameters, except for Exponential and Log Exponential, which use a single parameter.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.