Open Access

Table 6.

LyC escape fraction.

Name λ0a A(LyC)MWb Imodc, d Iobsc, e Iescc, f fescg fesch
(Å) (mag) (%) (%)
SDSS+COS
J0232+0025i 880-912 0.159 93.84 ± 1.92 31.29 2.16 + 2.07 0.00 + 0.06 $ ^{+2.07}_{-2.16} {\,}^{+0.06}_{-0.00} $ 36.27 2.50 + 2.40 0.00 + 0.07 $ ^{+2.40}_{-2.50} {\,}^{+0.07}_{-0.00} $ 38.66 2.67 + 2.56 0.00 + 0.07 $ ^{+2.56}_{-2.67} {\,}^{+0.07}_{-0.00} $ 47.65 3.29 + 3.15 0.00 + 0.09 $ ^{+3.15}_{-3.29} {\,}^{+0.09}_{-0.00} $
J0232+0025i 850-870 0.159 93.84 ± 1.92 8.56 1.46 + 1.53 0.02 + 0.00 $ ^{+1.53}_{-1.46} {\,}^{+0.00}_{-0.02} $ 9.85 1.68 + 1.76 0.02 + 0.00 $ ^{+1.76}_{-1.68} {\,}^{+0.00}_{-0.02} $ 10.55 1.81 + 1.89 0.02 + 0.00 $ ^{+1.89}_{-1.81} {\,}^{+0.00}_{-0.02} $ 12.94 2.21 + 2.31 0.03 + 0.00 $ ^{+2.31}_{-2.21} {\,}^{+0.00}_{-0.03} $
J0256+0122 850-890 0.510 39.53 ± 3.95 < 1.70j < 2.76 < 7.01 < 4.46
J0815+2942 850-890 0.214 57.49 ± 3.29 < 1.80j < 2.21 < 3.82 < 6.21
J0837+4512 870-890 0.162 60.28 ± 3.70 2.12 1.27 + 1.25 0.08 + 0.09 $ ^{+1.25}_{-1.27} {\,}^{+0.09}_{-0.08} $ 2.42 1.45 + 1.43 0.09 + 0.10 $ ^{+1.43}_{-1.45} {\,}^{+0.10}_{-0.09} $ 4.03 2.41 + 2.38 0.15 + 0.17 $ ^{+2.38}_{-2.41} {\,}^{+0.17}_{-0.15} $ 2.52 1.51 + 1.49 0.10 + 0.11 $ ^{+1.49}_{-1.51} {\,}^{+0.11}_{-0.10} $
J0901+5111 870-890 0.137 43.73 ± 4.87 < 1.10j < 1.20 < 2.70 < 1.60
J0908+4626 850-890 0.103 55.46 ± 4.50 2.57 2.08 + 4.36 0.49 + 0.00 $ ^{+4.36}_{-2.08} {\,}^{+0.00}_{-0.49} $ 2.77 2.25 + 4.70 0.53 + 0.00 $ ^{+4.70}_{-2.25} {\,}^{+0.00}_{-0.53} $ 4.94 4.00 + 8.38 0.94 + 0.00 $ ^{+8.38}_{-4.00} {\,}^{+0.00}_{-0.94} $ 3.56 2.88 + 6.04 0.68 + 0.00 $ ^{+6.04}_{-2.88} {\,}^{+0.00}_{-0.68} $
J0955+3935 850-890 0.074 58.22 ± 5.82 1.86 1.33 + 1.59 0.43 + 0.19 $ ^{+1.59}_{-1.33} {\,}^{+0.19}_{-0.43} $ 1.97 1.41 + 1.68 0.46 + 0.20 $ ^{+1.68}_{-1.41} {\,}^{+0.20}_{-0.46} $ 3.39 2.42 + 2.90 0.78 + 0.35 $ ^{+2.90}_{-2.42} {\,}^{+0.35}_{-0.78} $ 3.17 2.27 + 2.71 0.73 + 0.32 $ ^{+2.71}_{-2.27} {\,}^{+0.32}_{-0.73} $
J1021+0436i 820-912 0.134 119.41 ± 3.41 41.18 2.86 + 3.20 0.34 + 0.04 $ ^{+3.20}_{-2.86} {\,}^{+0.04}_{-0.34} $ 46.56 3.23 + 3.62 0.38 + 0.05 $ ^{+3.62}_{-3.23} {\,}^{+0.05}_{-0.38} $ 38.98 2.71 + 3.03 0.32 + 0.04 $ ^{+3.03}_{-2.71} {\,}^{+0.04}_{-0.32} $ 38.49 2.67 + 3.00 0.32 + 0.04 $ ^{+3.00}_{-2.67} {\,}^{+0.04}_{-0.32} $
J1021+0436i 750-800 0.134 119.41 ± 3.41 < 0.14j < 0.16 < 0.13 < 0.13
J1252+5237 870-890 0.072 62.98 ± 5.30 4.06 1.12 + 1.21 0.03 + 0.00 $ ^{+1.21}_{-1.12} {\,}^{+0.00}_{-0.03} $ 4.36 1.20 + 1.30 0.03 + 0.00 $ ^{+1.30}_{-1.20} {\,}^{+0.00}_{-0.03} $ 6.93 1.91 + 2.07 0.05 + 0.00 $ ^{+2.07}_{-1.91} {\,}^{+0.00}_{-0.05} $ 3.47 0.96 + 1.03 0.03 + 0.00 $ ^{+1.03}_{-0.96} {\,}^{+0.00}_{-0.03} $
J1358+4611 870-890 0.067 108.99 ± 3.02 2.52 1.21 + 1.29 0.03 + 0.00 $ ^{+1.29}_{-1.21} {\,}^{+0.00}_{-0.03} $ 2.72 1.31 + 1.39 0.03 + 0.00 $ ^{+1.39}_{-1.31} {\,}^{+0.00}_{-0.03} $ 2.52 1.21 + 1.29 0.03 + 0.00 $ ^{+1.29}_{-1.21} {\,}^{+0.00}_{-0.03} $ 1.81 0.87 + 0.93 0.02 + 0.00 $ ^{+0.93}_{-0.87} {\,}^{+0.00}_{-0.02} $
J1450+3913 870-890 0.067 87.29 ± 6.51 < 0.92j < 1.02 < 1.12 < 1.02
XShooter+COS
J0232+0025 880-912 0.159 56.01 ± 0.52 31.29 2.16 + 2.07 0.00 + 0.06 $ ^{+2.07}_{-2.16} {\,}^{+0.06}_{-0.00} $ 35.98 2.48 + 2.38 0.00 + 0.07 $ ^{+2.38}_{-2.48} {\,}^{+0.07}_{-0.00} $ 64.40 4.45 + 4.26 0.00 + 0.12 $ ^{+4.26}_{-4.45} {\,}^{+0.12}_{-0.00} $ 37.51 2.59 + 2.48 0.00 + 0.07 $ ^{+2.48}_{-2.59} {\,}^{+0.07}_{-0.00} $
J0232+0025 850-870 0.159 56.01 ± 0.52 8.56 1.46 + 1.53 0.02 + 0.00 $ ^{+1.53}_{-1.46} {\,}^{+0.00}_{-0.02} $ 9.85 1.68 + 1.76 0.02 + 0.00 $ ^{+1.76}_{-1.68} {\,}^{+0.00}_{-0.02} $ 17.62 3.01 + 3.15 0.04 + 0.00 $ ^{+3.15}_{-3.01} {\,}^{+0.00}_{-0.04} $ 10.25 1.75 + 1.83 0.02 + 0.00 $ ^{+1.83}_{-1.75} {\,}^{+0.00}_{-0.02} $

Notes. aRest-frame wavelength range in angstrom used to determine the LyC flux. bMilky Way extinction at the mean observed wavelengths of the range used to determine the LyC flux. The Cardelli et al. (1989) reddening law with R(V) = 3.1 is adopted here. cQuantities expressed in 10−18 erg s−1 cm−2 Å−1. dIntrinsic LyC flux derived from the modelled SED. eObserved LyC flux derived from the spectrum with shadow exposure. fLyC flux corrected for the Milky Way extinction. gfesc(LyC) = Iesc(total)/Imod, with Imod derived from the modelled SED (first method). hfesc(LyC) = Iesc(total)/Imod, with Imod derived from Hβ flux (second method). iTwo wavelength ranges considered for the determination of fesc(LyC). The first corresponds to the LyC bump, and the second to the stellar LyC emission. j1σ confidence upper limit.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.