Open Access

Table D.3.

Inferred system parameters.

Parameter Units Prior Median and 68.3% CI
Star
Stellar mass, M (M) N(1.053, 0.068) 1.063 ± 0.065
Stellar radius, R ( R N $ \mathcal{R}^{\mathrm{N}}_{\odot} $) N(1.030, 0.046) 1.035 ± 0.026
Stellar mean density, ρ (g cm−3) 1 . 372 0.10 + 0.050 $ 1.372^{+0.050}_{-0.10} $
Surface gravity, log g (cgs) 4 . 439 0.027 + 0.014 $ 4.439^{+0.014}_{-0.027} $
Planets Planet b Planet c Planet d
Semi-major axis, a (au) 0.1019 ± 0.0020 0.1595 ± 0.0032 0.2672 ± 0.0053
Eccentricity, e 0.0572 ± 0.0033 0 . 0091 0.0062 + 0.010 $ 0.0091^{+0.010}_{-0.0062} $ 0.040 ± 0.022
Argument of periastron, ω (°) 95.9 ± 5.6 187 21 + 51 $ 187^{+51}_{-21} $ 338 ± 37
Inclination, i (°) S(0, 180)b, c, S(0, 90)d 90.03 ± 0.72 90.11 ± 0.34 89 . 312 0.043 + 0.026 $ 89.312^{+0.026}_{-0.043} $
Longitude of the ascending node, Ω (°) U(90, 270)b, d 180.0 ± 1.8 180 (fixed at tref) 179.63 ± 0.42
Mean anomaly, M0 (°) 116.2 ± 5.0 263 63 + 20 $ 263^{+20}_{-63} $ 170 ± 39
e cos ω $ \sqrt{e}\cos{\omega} $ U(−1, 1) 0 . 025 0.024 + 0.017 $ -0.025^{+0.017}_{-0.024} $ 0 . 087 0.049 + 0.074 $ -0.087^{+0.074}_{-0.049} $ 0.155 ± 0.081
e sin ω $ \sqrt{e}\sin{\omega} $ U(−1, 1) 0.2372 ± 0.0052 −0.011 ± 0.040 −0.073 ± 0.098
Mass ratio, Mp/M U(0, 1) (5.12 ± 0.36)×10−5 (36.9 ± 2.3)×10−5 (53.5 ± 4.6)×10−5
Radius ratio, Rp/R U(0, 1) 0.06480 ± 0.00098 0.09578 ± 0.00092 0.0933 ± 0.0011
Scaled semi-major axis, a/R 21 . 27 0.55 + 0.25 $ 21.27^{+0.25}_{-0.55} $ 33 . 30 0.85 + 0.40 $ 33.30^{+0.40}_{-0.85} $ 55 . 78 1.4 + 0.66 $ 55.78^{+0.66}_{-1.4} $
Impact parameter, b 0.18 ± 0.13 0.14 ± 0.13 0.681 ± 0.026
T0′-2450000 (BJDTDB) U(8386, 10386) 9382.5322 ± 0.0016 9386.4191 ± 0.0011 9377.8713 ± 0.0021
P (d) U(0, 1000) 11.52195 ± 0.00090 22.5617 ± 0.0031 48.9176 ± 0.0047
K (m s−1) 4.93 ± 0.36 28.4 ± 1.9 31.8 ± 2.8
Planet mass, Mp (ME) 18.1 ± 1.7 131 ± 11 190 ± 20
(MJ) 0.0571 ± 0.0052 0.412 ± 0.036 0.597 ± 0.064
Planet radius, Rp ( R e E N $ \mathcal{R}^{\mathrm{N}}_{e \mathrm{E}} $) 7.31 ± 0.23 10.81 ± 0.32 10.52 ± 0.32
( R e J N $ \mathcal{R}^{\mathrm{N}}_{e \rm J} $) 0.652 ± 0.020 0.964 ± 0.029 0.939 ± 0.029
Planet mean density, ρp (g cm−3) 0.255 ± 0.026 0.573 ± 0.062 0.89 ± 0.11
Planet surface gravity, log gp (cgs) 2.521 ± 0.039 3.042 ± 0.043 3.224 ± 0.049
Equilibrium temperature, Teq (K) 878 ± 13 702 ± 10 542.4 ± 7.8
Mutual inclination, Ib, c (°) 1 . 37 0.78 + 1.4 $ 1.37^{+1.4}_{-0.78} $
Mutual inclination, Ic, d (°) 0.97 ± 0.39
RV
Coralie jitter U(0, 10) 0.79 ± 0.14
Coralie offset [m s−1] U(−105, 105) 13675.5 ± 3.9
Linear ephemerides
Period (d) 11.5308690 22.5687423 48.8644680
T0-2450000 (BJDTDB) 8656.213656 8664.157045 8693.788019

Notes. The table lists: Prior, posterior median, and 68.3% credible interval (CI) for the photodynamical analysis (Sect. C). The Jacobi orbital elements are given for the reference time tref = 2 459 386.419785 BJDTDB. The planetary equilibrium temperature is computed for zero albedo and full day-night heat redistribution. P′ and T0′ should not be confused with the linear ephemeris, and they were only used to reduce the correlations between jump parameters, replacing the semi-major axis and the mean anomaly at tref. The linear ephemerides are derived from the median posterior transit times spanning the years 2019 to 2026. T 0 t ref P 2 π ( M 0 E + e sin E ) $ T\prime_0 \equiv t_{\mathrm{ref}} - \frac{P\prime}{2\pi}\left(M_0-E+e\sin{E}\right) $ with E = 2 arctan { 1 e 1 + e tan [ 1 2 ( π 2 ω ) ] } $ E=2\arctan{\left\{\sqrt{\frac{1-e}{1+e}}\tan{\left[\frac{1}{2}\left(\frac{\pi}{2}-\omega\right)\right]}\right\}} $, P 4 π 2 a 3 G M $ P\prime \equiv \sqrt{\frac{4\pi^2a^{3}}{\mathcal{G}M_{\star}}} $, K M p sin i M 2 / 3 1 e 2 ( 2 π G P ) 1 / 3 $ K\prime \equiv \frac{M_p \sin{i}}{M_\star^{2/3}\sqrt{1-e^2}}\left(\frac{2 \pi \mathcal{G}}{P\prime}\right)^{1/3} $. CODATA 2018: 𝒢 = 6.674 30  × 10−11 m3 kg−1 s−2. IAU 2012: au = 149 597 870 700 m. IAU 2015: R N $ \mathcal{R}^{\mathrm{N}}_{\odot} $ = 6.957  × 108 m, ( GM ) N $ (\mathcal{GM})^{\mathrm{N}}_{\odot} $ = 1.327 124 4 ×1020 m3 s−2, R e E N $ \mathcal{R}^{\mathrm{N}}_{e \mathrm{E}} $ = 6.378 1 ×106 m, ( GM ) E N $ (\mathcal{GM})^{\mathrm{N}}_{\mathrm{E}} $ = 3.986 004 ×1014 m3 s−2, R e J N $ \mathcal{R}^{\mathrm{N}}_{e \rm J} $ = 7.149 2  × 107 m, ( GM ) J N $ (\mathcal{GM})^{\mathrm{N}}_{\mathrm{J}} $ = 1.266 865 3 × 1017 m3 s−2. M = ( GM ) N / G $ M_{\odot} = (\mathcal{GM})^{\mathrm{N}}_{\odot}/\mathcal{G} $, M E = ( GM ) E N / G $ \mathrm{M_E} = (\mathcal{GM})^{\mathrm{N}}_{\mathrm{E}}/\mathcal{G} $, M J = ( GM ) J N / G $ \mathrm{M}_{\mathrm{J}} = (\mathcal{GM})^{\mathrm{N}}_{\mathrm{J}}/\mathcal{G} $, k 2 = ( GM ) N ( 86 400 s ) 2 / au 3 $ k^2 = (\mathcal{GM})^{\mathrm{N}}_{\odot}\,(86\,400\ \rm{s})^2/\rm{au}^3 $. N(μ, σ): Normal distribution with mean μ and standard deviation σ. U(a, b): A uniform distribution defined between a lower a and upper b limit. S(a, b): A sinusoidal distribution defined between a lower a and upper b limit.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.