Open Access
| Issue |
A&A
Volume 674, June 2023
|
|
|---|---|---|
| Article Number | A159 | |
| Number of page(s) | 15 | |
| Section | The Sun and the Heliosphere | |
| DOI | https://doi.org/10.1051/0004-6361/202245742 | |
| Published online | 19 June 2023 | |
- Abed, A. K., Qahwaji, R., & Abed, A. 2021, Adv. Space Res., 67, 2544 [NASA ADS] [CrossRef] [Google Scholar]
- Adams, H., Emerson, T., Kirby, M., et al. 2017, J. Mach. Learn. Res., 18, 218 [Google Scholar]
- Barnes, G., Leka, K., Schrijver, C., et al. 2016, ApJ, 829, 89 [Google Scholar]
- Bobra, M., & Couvidat, S. 2015, ApJ, 798, 135 [NASA ADS] [CrossRef] [Google Scholar]
- Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, Sol. Phys., 289, 3549 [Google Scholar]
- Bubenik, P. 2015, J. Mach. Learn. Res., 16, 77 [Google Scholar]
- Campi, C., Benvenuto, F., Massone, A. M., et al. 2019, ApJ, 883, 150 [NASA ADS] [CrossRef] [Google Scholar]
- Carlsson, G. 2009, Bull. Am. Math. Soc., 46, 255 [CrossRef] [Google Scholar]
- Carrière, M., Chazal, F., Ike, Y., et al. 2020, in Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, eds. S. Chiappa, & R. Calandra (PMLR), Proc. Mach. Learn. Res., 108, 2786 [Google Scholar]
- Carrière, M., Cuturi, M., & Oudot, S. 2017, in Proceedings of the 34th International Conference on Machine Learning, eds. D. Precup, & Y. W. Teh (PMLR), Proc. Mach. Learn. Res., 70, 664 [Google Scholar]
- Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., & Wasserman, L. 2014, Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14 (New York: ACM), 474:474 [Google Scholar]
- Chen, Y., Manchester, W. B., Hero, A. O., et al. 2019, Space Weather, 17, 1404 [NASA ADS] [CrossRef] [Google Scholar]
- Crown, M. D. 2012, Space Weather, 10, 6006 [Google Scholar]
- Davies, A., Velickovic, P., Buesing, L., et al. 2021, Nature, 600, 70 [NASA ADS] [CrossRef] [Google Scholar]
- de Silva, V., & Ghrist, R. 2007, Algebr. Geom. Topol., 7, 339 [Google Scholar]
- Deshmukh, V., Berger, T., Bradley, E., & Meiss, J. 2020, J. Space Weather Space Clim., 10, 13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Deshmukh, V., Berger, T., Meiss, J. D., & Bradley, E. 2021, Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2–9, 2021 (AAAI Press), 15293 [Google Scholar]
- Deshmukh, V., Flyer, N., van der Sande, K., & Berger, T. 2022, ApJS, 260, 9 [NASA ADS] [CrossRef] [Google Scholar]
- Duchi, J., Hazan, E., & Singer, Y. 2011, J. Mach. Learn. Res., 12, 2121 [Google Scholar]
- Edelsbrunner, H., Letscher, D., & Zomorodian, A. 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science (IEEE), 454 [CrossRef] [Google Scholar]
- Florios, K., Kontogiannis, I., Park, S.-H., et al. 2018, Sol. Phys., 293, 28 [NASA ADS] [CrossRef] [Google Scholar]
- Geurts, P., Ernst, D., & Wehenkel, L. 2006, Mach. Learn., 63, 3 [Google Scholar]
- Ghrist, R. 2008, Bull. Am. Math. Soc., 45, 61 [Google Scholar]
- Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (The MIT Press) [Google Scholar]
- Hale, G., Ellerman, F., Nicholson, S., & Joy, A. H. 1919, ApJ, 49, 153 [NASA ADS] [CrossRef] [Google Scholar]
- Huang, X., Wang, H., Xu, L., et al. 2018, ApJ, 856, 7 [NASA ADS] [CrossRef] [Google Scholar]
- Jolliffe, I., & Stephenson, D. 2012, Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd edn. (Wiley) [Google Scholar]
- Kaczynski, T., Mischaikow, K., & Mrozek, M. 2004, Computational Homology (New York: Springer-Verlag) [CrossRef] [Google Scholar]
- Knyazeva, I. S., Urtiev, F. A., & Makarenko, N. G. 2017, Geomagn. Aeron., 57, 1086 [NASA ADS] [CrossRef] [Google Scholar]
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2017, Commun. ACM, 60, 84 [CrossRef] [Google Scholar]
- Kusano, G., Hiraoka, Y., & Fukumizu, K. 2016, in Proceedings of The 33rd International Conference on Machine Learning, eds. M. F. Balcan, & K. Q. Weinberger (New York: PMLR), Proc. Mach. Learn. Res., 48, 2004 [Google Scholar]
- Le, T., & Yamada, M. 2018, in Advances in Neural Information Processing Systems, eds. S. Bengio, H. Wallach, H. Larochelle, et al. (Curran Associates, Inc.), 31 [Google Scholar]
- Leka, K., & Barnes, G. 2007, ApJ, 656, 1173 [NASA ADS] [CrossRef] [Google Scholar]
- Leka, K., Park, S.-H., Kusano, K., et al. 2019a, ApJ, 243, 36 [NASA ADS] [Google Scholar]
- Leka, K., Park, S.-H., Kusano, K., et al. 2019b, ApJ, 881, 101 [NASA ADS] [CrossRef] [Google Scholar]
- Li, X., Zheng, Y., Wang, X., & Wang, L. 2020, ApJ, 891, 10 [Google Scholar]
- Liaw, R., Liang, E., Nishihara, R., et al. 2018, ArXiv e-prints [arXiv:1807.05118] [Google Scholar]
- Liu, D. C., & Nocedal, J. 1989, Math. Progr., 45, 503 [CrossRef] [Google Scholar]
- Martinez-Cantin, R. 2014, J. Mach. Learn. Res., 15, 3735 [Google Scholar]
- McInnes, L., Healy, J., Saul, N., & Großberger, L. 2018, J. Open Source Softw., 3, 861 [CrossRef] [Google Scholar]
- McIntosh, P. S. 1990, Sol. Phys., 125, 251 [NASA ADS] [CrossRef] [Google Scholar]
- Murphy, K. P. 2012, Machine Learning: A Probabilistic Perspective (The MIT Press) [Google Scholar]
- Nandy, D., Mackay, D. H., Canfield, R. C., & Martens, P. 2008, J. Atmos. Solar-Terres. Phys., 70, 605 [NASA ADS] [CrossRef] [Google Scholar]
- Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2017, ApJ, 835, 156 [NASA ADS] [CrossRef] [Google Scholar]
- Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2018, ApJ, 858, 113 [NASA ADS] [CrossRef] [Google Scholar]
- Nishizuka, N., Kubo, Y., Sugiura, K., Den, M., & Ishii, M. 2021, Earth Planets Space, 73, 1 [CrossRef] [Google Scholar]
- Park, E., Moon, Y.-J., Shin, S., et al. 2018, ApJ, 869, 91 [NASA ADS] [CrossRef] [Google Scholar]
- Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. 2015, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4741 [Google Scholar]
- Robins, V., & Turner, K. 2016, Phys. D: Nonlinear Phenom., 334, 99 [NASA ADS] [CrossRef] [Google Scholar]
- Scherrer, P. H., Schou, J., Bush, R. I., et al. 2012, Sol. Phys., 275, 207 [Google Scholar]
- Schrijver, C. J. 2007, ApJ, 655, L117 [Google Scholar]
- Singh, G., Memoli, F., & Carlsson, G. 2007, in Eurographics Symposium on Point-Based Graphics, eds. M. Botsch, R. Pajarola, B. Chen, & M. Zwicker (The Eurographics Association), 91 [Google Scholar]
- Sinha, S., Gupta, O., Singh, V., et al. 2022, ApJ, 935, 45 [NASA ADS] [CrossRef] [Google Scholar]
- Snoek, J., Larochelle, H., & Adams, R. P. 2012, in Advances in Neural Information Processing Systems, eds. F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Curran Associates, Inc.), 25 [Google Scholar]
- Snyder, J. P. 1987, Map Projections–A Working Manual (US Government Printing Office), 1395 [Google Scholar]
- Topaz, C. M., Ziegelmeier, L., & Halverson, T. 2015, PLoS One, 10, 1 [Google Scholar]
- Van der Maaten, L., & Hinton, G. 2008, J. Mach. Learn. Res., 9, 2579 [Google Scholar]
- Xian, L., Adams, H., Topaz, C., & Ziegelmeier, L. 2021, Found. Data Sci., 4, 1 [Google Scholar]
- Xu, X., Cisewski-Kehe, J., Green, S. B., & Nagai, D. 2019, Astron. Comput., 27, 34 [Google Scholar]
- Yuan, Y., Shih, F. Y., Jing, J., et al. 2010, Proc. Int. Astron. Union, 6, 446 [Google Scholar]
- Zheng, Y., Li, X., & Wang, X. 2019, ApJ, 885, 73 [Google Scholar]
- Zheng, Y., Li, X., Si, Y., Qin, W., & Tian, H. 2021, MNRAS, 507, 3519 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.